Abstract
The glass formation, crystallization behavior, and soft magnetic properties of Fe80−xNbxB20 (x = 3, 6, and 9) and Fe82.5−yNbyB17.5 (y = 3.5, 5, 6, and 7) metallic glasses prepared by melt spinning were investigated. Differential scanning calorimetry analysis indicated that an increased Nb content results in increased thermal stability and glass-forming ability for both Fe80−xNbxB20 and Fe82.5−yNbyB17.5 glassy alloys. The supercooled liquid region increases from 26 to 50 K for Fe80−xNbxB20 alloys and from 32 to 48 K for Fe82.5−yNbyB17.5 alloys. Magnetic measurements reveal that saturation magnetization ranges from 65 to 137 emu g−1 for Fe80−xNbxB20 glassy alloys and varies from 91 to 121 emu g−1 for Fe82.5−yNbyB17.5 glassy alloys. The superior magnetic properties, high glass-forming ability, and low cost of raw materials make the current Fe–Nb–B ternary alloys promising for potential applications in the electronics industry.
References
[1] P.Duwez, S.C.H.Lin: J. Appl. Phys.38 (1967) 4096. 10.1063/1.1709084Search in Google Scholar
[2] A.Inoue: Acta Mater.48 (2000) 279. 10.1016/S1359-6454(99)00300-6Search in Google Scholar
[3] S.Y.Meng, H.B.Ling, Q.Li, J.J.Zhang: Scr. Mater.81 (2014) 24. 10.1016/j.scriptamat.2014.02.018Search in Google Scholar
[4] C.Y.Lin, H.Y.Tien, T.S.Chin: Appl. Phys. Lett.86 (2005) 162501. 10.1063/1.1901808Search in Google Scholar
[5] D.A.Babu, B.Majumdar, A.P.Srivastava, B.R.Rao, D.Srivastava, B.S.Murthy, D.Akhtar: Metall. Mater. Trans. A42 (2011) 508. 10.1007/s11661-010-0446-5Search in Google Scholar
[6] Z.P.Lu, C.T.Liu, J.R.Thompson, W.D.Porter: Phys. Rev. Lett.92 (2004) 245503. 10.1103/PhysRevLett.92.245503Search in Google Scholar PubMed
[7] J.Torrens-Serra, J.Rodríguez-Viejo, M.T.Clavaguera-Mora: Phys. Rev. B76 (2007) 214111. 10.1103/PhysRevB.76.214111Search in Google Scholar
[8] K.Suzuki, A.Makino, A.Inoue, T.Masumoto: J. Appl. Phys.74 (1993) 3316. 10.1063/1.354555Search in Google Scholar
[9] M.Stoica, K.Hajlaoui, A.Lemoulec, A.R.Yavari: Philos. Mag. Lett.86 (2006) 267. 10.1080/09500830600696344Search in Google Scholar
[10] J.M.Park, G.Wang, R.Li, N.Mattern, J.Eckert, D.H.Kim: Appl. Phys. Lett.96 (2010) 031905. 10.1063/1.3291668Search in Google Scholar
[11] Z.Y.Chang, X.M.Huang, L.Y.Chen, M.Y.Ge, Q.K.Jiang, X.P.Nie, J.Z.Jiang: Mater. Sci. Eng. A517 (2009) 246. 10.1016/j.msea.2009.03.082Search in Google Scholar
[12] J.M.Park, J.S.Park, D.H.Kim, J.H.Kim, E.Fleury: J. Mater. Res.21 (2006) 1019. 10.1557/jmr.2006.0126Search in Google Scholar
[13] J.H.Yao, H.Yang, J.Zhang, J.Q.Wang, Y.Li: J. Mater. Res.23 (2008) 392. 10.1557/JMR.2008.0055Search in Google Scholar
[14] J.H.Yao, J.Q.Wang, Y.Li: Appl. Phys. Lett.92 (2008) 251906. 10.1063/1.2949747Search in Google Scholar
[15] M.Imafuku, S.Sato, H.Koshiba, E.Matsubara, A.Inoue: Scr. Mater.44 (2001) 2369. 10.1016/S1359-6462(01)00776-XSearch in Google Scholar
[16] A.Makino, T.Hatanai, A.Inoue, T.Masumoto: Mater. Sci. Eng. A226–228 (1997) 594. 10.1016/S0921-5093(96)10693-6Search in Google Scholar
[17] A.Makino, K.Suzuki, A.Inoue, T.Masumoto: Mater. Sci. Eng. A179/180 (1994) 127. 10.1016/0921-5093(94)90178-3Search in Google Scholar
[18] A.Inoue, A.Makino: Nanostruct. Mater.9 (1997) 403. 10.1016/S0965-9773(97)00093-7Search in Google Scholar
[19] T.Itoi, A.Inoue: Mater. Trans. JIM40 (1999) 643. 10.2320/matertrans1989.40.643Search in Google Scholar
[20] J.Torrens-Serra, P.Bruna, J.Rodriguez-Viejo, S.Roth, M.T.Clavaguera-Mor: Intermetallics18 (2010) 773. 10.1016/j.intermet.2009.12.006Search in Google Scholar
[21] D.S.Song, J.H.Kim, E.Fleury, W.T.Kim, D.H.Kim: J. Alloys Compd.389 (2005) 159. 10.1016/j.jallcom.2004.08.014Search in Google Scholar
[22] Z.Stokłosa, J.Rasek, P.Kwapuliński, G.Haneczok, A.Chrobak, J.J.Lelątko, L.Pająk: Phys. Status Solidi A207 (2010) 452. 10.1002/pssa.200925356Search in Google Scholar
[23] A.R.Yavari, G.Fish, S.K.Das, L.A.Davis: Mater. Sci. Eng. A181–182 (1994) 1415. 10.1016/0921-5093(94)90875-3Search in Google Scholar
[24] A.Takeuchi, A.Inoue: Mater. Trans. JIM41 (2000) 1372. 10.2320/matertrans1989.41.1372Search in Google Scholar
[25] Y.Zhang, Y.J.Zhou, J.P.Lin, G.L.Chen, P.K.Liaw: Adv. Eng. Mater.10 (2008) 534. 10.1002/adem.200700240Search in Google Scholar
[26] E.Matsubara, S.Sato, M.Imafuku, T.Nakamura, H.Koshiba, A.Inoue, Y.Waseda: Mater. Sci. Eng. A312 (2001) 136. 10.1016/S0921-5093(00)01903-1Search in Google Scholar
[27] S.Vincent, J.Bhatt, B.S.Murty: Metall. Mater. Trans. A45 (2014) 2363. 10.1007/s11661-013-1855-zSearch in Google Scholar
[28] Z.Q.Liu, Z.F.Zhang: J. Appl. Phys.114 (2013) 243519. 10.1063/1.4858380Search in Google Scholar
[29] X.J.Gu, S.J.Poon, G.J.Shiflet, M.Widom: Acta Mater.56 (2008) 88. 10.1016/j.actamat.2007.09.011Search in Google Scholar
[30] A.Inoue, B.L.Shen, H.Koshiba, H.Kato, A.R.Yavari: Nature Mater.2 (2003) 661. 14502274 10.1038/nmat982Search in Google Scholar PubMed
[31] V.Ponnambalam, S.J.Poon, G.J.Shiflet, V.M.Keppens, R.Tayloy, G.Petculescu: Appl. Phys. Lett.83 (2003) 1131. 10.1063/1.1599636Search in Google Scholar
[32] P.Soderlind, R.Ahuja, O.Eriksson, J.M.Wills, B.Johansson: Phys. Rev. B50 (1994) 5918. 10.1103/PhysRevB.50.5918Search in Google Scholar PubMed
[33] A.P.Malozemoff, A.R.Williams, K.Terakura, V.L.Moruzzi, K.Fukamichi: J. Magn. Magn. Mater.35 (1983) 192. 10.1016/0304-8853(83)90492-4Search in Google Scholar
[34] T.Mizoguchi: AIP Confer. Proc.34 (1976) 286. 10.1063/1.2946104Search in Google Scholar
[35] K.Fukamichi, R.J.Gambino: IEEE Trans. Magn.17 (1981) 3059. 10.1109/TMAG.1981.1061592Search in Google Scholar
[36] T.D.Shen, B.R.Sun, S.W.Xin: Intermetallics65 (2015) 111. 10.1016/j.intermet.2015.06.001Search in Google Scholar
[37] M.J.Shi, Z.Q.Liu, T.Zhang: J. Mater. Sci. Technol.31 (2015) 493. 10.1016/j.jmst.2014.10.009Search in Google Scholar
[38] H.X.Li, J.E.Gao, S.L.Wang, S.Yi, Z.P.Lu: Metall. Mater. Trans. A43 (2012) 2615. 10.1007/s11661-011-0792-ySearch in Google Scholar
[39] I.Betancourt, R.Landa: J. Alloys Compd.481 (2009) 87. 10.1016/j.jallcom.2009.03.145Search in Google Scholar
© 2019, Carl Hanser Verlag, München