Abstract
One fundamental topic in metallography is determining relations between microscopic arrangements of phases and defects, and macroscopic properties (such as tensile strength, effective stiffness tensor, effective conductivity, permeability) which are important for materials application. For multiphase materials such as aluminum–silicon alloys our work demonstrates how – in particular – three-dimensional geometric microstructure characteristics, such as particle sphericity, connectivity and contiguity can be measured accurately from 3D X-ray computed tomography scans. This study details a simple yet very effective imaging toolchain for measuring these quantities. By tailoring the three-dimensional morphology of the alloys’ phases through composition, cooling and thermo-mechanical treatment one can establish a multidimensional materials database. For a given function and application, such a database would allow for optimized selection of alloy and processing, e.g. using a material which is specifically designed and produced according to its properties. The extraction of meaningful stochastic parameters from 3D CT scans of metallic alloys is therefore highly important.
References
[1] M. Metzger , T.Seifert: Int. J. Solids Struct.87 (2016) 102–109. 10.1016/j.ijsolstr.2016.02.027Search in Google Scholar
[2] S.F. Nielsen , H.F.Poulsen, F.Beckmann, C.Thorning, J.A.Wert: Acta Mater.51 (2003) 2407–2415. 10.1016/S1359-6454(03)00053-3Search in Google Scholar
[3] Y.B. Zhang , T.Andriollo, S.Fæster, W.Liu, A.Sturlason, R.Barabash: IOP Conference Series: Materials Science and Engineering219 (2017) 012054, IOP Publishing. 10.1088/1757-899X/219/1/012054Search in Google Scholar
[4] M.A. Azeem , M.K.Bjerre, R.C.Atwood, N.Tiedje, P.D.Lee: Acta Mater.155 (2018) 393–401. 10.1016/j.actamat.2018.06.007Search in Google Scholar
[5] L. Salvo , P.Cloetens, E.Maire, S.Zabler, J.J.Blandin, J.Y.Buffière, C.Josserond: Nucl. Instrum. Meth. B200 (2003) 273–286. 10.1016/S0168-583X(02)01689-0Search in Google Scholar
[6] N. Limodin , L.Salvo, E.Boller, M.Suéry, M.Felberbaum, S.Gailliègue, K.Madi: Acta Mater.57 (2009) 2300–2310. 10.1016/j.actamat.2009.01.035Search in Google Scholar
[7] P.H. Kamm , F.García-Moreno, T.R.Neu, K.Heim, R.Mokso, J.Banhart: Adv. Engin. Mater.19 (2017) 1600550. 10.1002/adem.201600550Search in Google Scholar
[8] A. Koch , C.Raven, P.Spanne, A.Snigirev: JOSA A15 (1998) 1940–1951. 10.1364/JOSAA.15.001940Search in Google Scholar
[9] P. Cloetens , R.Barrett, J.Baruchel, J.P.Guigay, M.Schlenker: J. Phys. D: Appl. Phys.29 (1996) 133. 10.1088/0022-3727/29/1/023Search in Google Scholar
[10] J.M. Yu , N.Wanderka, A.Rack, R.Daudin, E.Boller, H.Markötter, J.Banhart: Acta Mater.129 (2017) 194–202. 10.1016/j.actamat.2017.02.048Search in Google Scholar
[11] https://www.physik.uni-wuerzburg.de/en/lrm/research/software/.Search in Google Scholar
[12] D. Paganin , S.C.Mayo, T.E.Gureyev, P.R.Miller, S.W.Wilkins: J. Microsc.206 (2002) 33–40. 12000561 10.1046/j.1365-2818.2002.01010.xSearch in Google Scholar PubMed
[13] M. Ullherr , S.Zabler: Opt. Express23 (2015) 32718–32727 26699061 10.1364/OE.23.032718Search in Google Scholar PubMed
[14] P. Soille : (2013). Morphological image analysis: principles and applications. Springer Science & Business Media.Search in Google Scholar
© 2020, Carl Hanser Verlag, München