Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 25, 2019

Investigation of the 3D hydrogen distribution in zirconium alloys by means of neutron tomography

Paper presented at the Symposium “Tomographic and Radiographic Imaging with Synchrotron X-rays and Neutrons” of the MSE 2018, 26–28 September 2018, Darmstadt, Germany

  • M. Grosse , B. Schillinger , P. Trtik , N. Kardjilov and M. Steinbrück

Abstract

The fuel rod claddings in nuclear light water reactors are made of zirconium alloys. Corrosion of these alloys during operation and in particular high temperature oxidation during nuclear accidents results in the production of free hydrogen. The cladding can absorb this hydrogen. It affects the mechanical properties of the cladding material. Hydrogen embrittlement of these materials provides the risk of brittle fracture of the cladding by thermo-shock during emergency cooling. At KIT the behaviour of cladding materials under different hypothetical nuclear accident scenarios was investigated. One focus was on hydrogen absorption and distribution/re-distribution in the alloys. The hydrogen distribution was determined mainly by neutron tomography. Examples for the determination of the 3D hydrogen distribution in cladding tubes after loss of coolant accident simulation tests are given and discussed.


Correspondence address, Mirco Grosse, IAM-AWP, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe, Germany, Tel.: +49 721 608 23884, Fax: +49 721 608 24567, E-mail:

References

[1] M. Steinbrueck : J. Nucl. Mater.334 (2004) 58. 10.1016/j.jnucmat.2004.05.007Search in Google Scholar

[2] A. Sieverts , W.Krumbhaar: Chemische Berichte43 (1910), 893. 10.1002/cber.191004301152Search in Google Scholar

[3] J.C. Brachet D. Hamon M. Le Saux V. Vandenberghe , C.Toffolon-Masclet, E.Rouesne, S.Urvoy, J.-L.Bechade, C.Raepsaet, J.-L.Lacour, G.Bayon, F.Ott: J. Nucl. Mater.488 (2017) 267. 10.1016/j.jnucmat.2017.03.009Search in Google Scholar

[4] F. Gröschel , P.Schleuniger, A.Hermann, E.Lehmann: Nucl. Instrum. MethodsA424 (1999) 215. 10.1016/j.phpro.2013.03.035Search in Google Scholar

[5] R. Yasuda , M.Matsubayashi, M.Nakata, K.Harada: J. Nucl. Mater.302 (2002) 156. 10.1109/TNS. 2005.844297Search in Google Scholar

[6] E. Lehmann , P.Vontobel, A.Hermann: Nucl. Instrum. MethodsA515 (2003) 745. 10.1016/j.nima.2003.07.059Search in Google Scholar

[7] E. Svab , G.Meszaros, Z.Somogyvari, M.Balasko, F.Körösi: Appl. Radiat. Isot.61 (2004), 471. 15246386 10.1016/j.apradiso.2004.03.072Search in Google Scholar PubMed

[8] M. Grosse , E.Lehmann, P.Vontobel, M.Steinbrueck: Nucl. Instrum. Methods Phys. Res. Sect. A566 (2006), 739. 10.1016/j.nima.2006.06.038Search in Google Scholar

[9] A. Agrawal , Y.Kashyap, P.S.Sarkar, A.N.Behra, M.Shukla, R.N.Singh, A.Sinha, J.K.Chakravartty: J. Nucl. Mater.421 (2012) 47. 10.1016/j.jnucmat.2011.10.047Search in Google Scholar

[10] M. Grosse , S.Valance, J.Stuckert, M.Steinbrueck, M.Walter, A.Kaestner, S.Hartmann, J.Santisteban: MRS Online Proceeding Library Archive1528 (2013). 10.1557/opl.2013.364Search in Google Scholar

[11] Z. Wang , U.Garbe, H.Li, R.P.Harrison, A.Kaestner, E.Lehmann: Metall. Mater. Trans. B45 (2014) 532. 10.1007/s11663-013-9866-0Search in Google Scholar

[12] T. Smith , H.Bilheux, H.Ray, J.C.Bilheux, YYan: Phys. Proc.69 (2015), 478. 10.1016/j.phpro.2015.07.067Search in Google Scholar

[13] C. Grünzweig , D.Mannes, A.Kaestner, F.Schmid, P.Vontobel, J.Hovind, S.Hartmann, S.Peetermans, E.Lehmann: Phys. Proc.43 (2013) 231. 10.1016/j.phpro.2013.03.027Search in Google Scholar

[14] A.S. Tremsin , M.Morgano, T.Panzner, E.Lehmann, U.Filgers, J.V.Vallerga, J.B.McPhate, O.H.W.Siegmund, W.B.Feller: Nucl. Instrum. MethodsA784 (2015) 486. 10.1016/j.nima.2014.09.026Search in Google Scholar

[15] S. Abolhassani , G.Bart, J.Bertsch, C.Degueldre, M.Grosse, L.Hallstadius, A.Hermann, G.Kuri, G.Ledergerber, C.Lemaignan, M.Martin, S.Portier, C.Proff, R.Restani, S.Valance, S.Valizadeh, H.Wiese: Zirconium in the Nuclear Industry: 17th Volume, Eds. B.Comstock and P.Barbéris, ASTM-STP1543 (2015) 540. 10.1520/STP154320130007Search in Google Scholar

[16] M. Grosse , M.SteinbrueckA.Kaestner: Nucl. Instrum. MethodsA651 (2011) 315. 10.1016/j.nima.2011.02.102Search in Google Scholar

[17] M. Grosse , M.van den Berg, C.Goulet, A.Kaestner: J. Physics: Conference Series340 (2012) 012106. 10.1088/1742-6596/340/1/012106Search in Google Scholar

[18] W. Gong P. Trtik , S.Valance, J.Bertsch: J. Nucl. Mater.508 (2018) 459. 10.1016/j.jnucmat.2018.05.079Search in Google Scholar

[19] M. Grosse , J.Stuckert, M.Steinbrück, A.Kaestner: J. Nucl. Mater.420 (2012) 575. 10.1016/j.jnucmat.2011.11.045Search in Google Scholar

[20] M. Grosse , J.Stuckert, C.Roessger, M.Steinbrueck, M.Walter, A.Kaestner: Zirconium in the Nuclear Industry: 17th Intern. Symp., STP 1543, R.Comstock and P.Barberis, Eds. (2015) 1054. 10.1520/STP154320120155Search in Google Scholar

[21] U. Stuhr , M.Grosse, W.Wagner: Mater. Sci. Eng. A437 (2006) 134. 10.1016/j.msea.2006.04.069Search in Google Scholar

[22] Atomic Energy Commission Rule-Making Hearing, Opinion of the Commission”, Docket RM-50–1, 28 December, (1973).Search in Google Scholar

[23] RSK-Leitlinien für Druckwasserreaktoren”, Ursprungsfassung (3. Ausgabe vom 14. Oktober 1981) mit Änderungen vom 15.11.1996 (in German).Search in Google Scholar

[24] H.M. Chung : Nucl. Eng. Technol.37 (2005), 327.Search in Google Scholar

[25] F. Nagase , T.Fuketa: J. Nucl. Sci. Technol.42 (2005), 209. 10.3327/jnst.42.209Search in Google Scholar

[26] M. Billone , Y.Yan, T.Burtseva, R.Daum: “Cladding Embrittlement During Postulated Loss-of-Coolant Accidents,” NUREG/CR-6967 (2008). 10.2172/946677Search in Google Scholar

[27] C. Grandjean , G.Hache: “A State-of-the-Art Review of Past Programmes Devoted to Fuel Behaviour under Loss-of-Coolant Conditions. Part 3, IRSN report SEMCA 2008093, Saint Paul lez Durance Cedex, 2008.Search in Google Scholar

[28] M. Steinbrück , M.Große, L.Sepold, J.Stuckert: Nucl. Eng. & Des.240 (2010) 1714. 10.1016/j.nucengdes.2010.03.021Search in Google Scholar

[29] J. Stuckert , M.Große, C.Rössger, M.Klimenkov, M.Steinbrück, M.Walter: Nucl. Eng. Des.255 (2013) 185. https://www.ncnr.nist.gov/resources/n-lengths. 10.1016/j.nucengdes.2012.10.024Search in Google Scholar

[30] J.R. Santisteban , L.Edwards, M.E.Fitzpatrick, A.Steuwer, P.J.Withers, M.R.Daymond, M.W.Johnson, N.Rhodes, E.M.Schooneveld: Nucl. Instrum. Methods Phys. Res. Sect. A481 (2002), 765. 10.1016/S0168-9002(01)01256-6Search in Google Scholar

[31] J.P. Foster , R.J.Comstock, S.A.Worcester, G.P.Sabol: ZIRLO MATERIAL FOR LIGHT WATER REACTOR APPLICATIONS, United States Patent No 5,112,573 (1992).Search in Google Scholar

[32] M. Grosse : Modelling of the hydrogen distribution in cladding tubes after LOCA, 19th International QUENCH Workshop, Karlsruhe, Germany, Nov. 19–21 (2013).Search in Google Scholar

Received: 2018-11-05
Accepted: 2019-11-15
Published Online: 2019-12-25
Published in Print: 2020-01-09

© 2020, Carl Hanser Verlag, München

Downloaded on 30.11.2023 from https://www.degruyter.com/document/doi/10.3139/146.111863/html
Scroll to top button