Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 16, 2020

Thermodynamic description of the Eu–Ga system using substitutional solution and associate models

  • Fei Li , Jinming Liu , Qugang Li , Chengjun Guo , Xu Zhang and Jian Xiao


The Eu–Ga system is first optimized by the CALculation of PHAse Diagrams (CALPHAD) technique based on the experimental data in the literature. The associate model for the liquid phase is tested and compared with the substitutional solution model given the asymmetric shape of the liquid in the Eu–Ga phase diagram. Description results show that the associate model achieved better consistency with the available experimental data than the substitutional model. The liquid significantly deviates from the regular solution and shows association between Eu and Ga. The excess Gibbs energies of the solution phases (e. g., liquid, bcc, orthorhombic) are modeled through the Redlich–Kister polynomial functions. Intermetallics, such as Eu5Ga3, EuGa, Eu2Ga3, EuGa2, Eu2Ga5, and EuGa4, are treated as stoichiometric compounds. This work shows that the Eu–Ga system hosts two eutectic, five peritectic, and one congruent reactions. Two sets of parameters for self-consistent thermodynamic description of the Eu–Ga binary system are obtained.

Correspondence address, Dr. Jinming Liu, School of Material Science and Engineering Jiangxi University of Science and Technology, Ganzhou, 341000, P.R. China, Tel.: +86 797 831 2151, E-mail:


[1] R. Birkhahn , A.J.Steckl: Appl. Phys. Lett.73 (1998) 2143. S0003-6951(98)0264-2Search in Google Scholar

[2] A.J. Steckl , M.Garter, R.Birkhahn, J.Scofield: Appl. Phys. Lett.73 (1998) 2450. S0003-6951(98)00343-XSearch in Google Scholar

[3] H. Wu , C.B.Poitras, M.Lipson, M.G.Spencer, J.Hunting, F.J.Disalvo, H.Wu, C.B.Poitras, M.Lipson, M.G.Spencer, J.Hunting, F.J.Disalvo: Appl. Phys. Lett.86 (2005) 191918. 10.1063/1.1923175Search in Google Scholar

[4] J. Heikenfeld , M.Garter, D.S.Lee, R.Birkhahn, A.J.Steckl: Appl. Phys. Lett.75 (1999) 1189. 10.1063/1.124686Search in Google Scholar

[5] M. Pan , A.J.Steckl: Appl. Phys. Lett.83 (2003) 9. 10.1063/1.1590738Search in Google Scholar

[6] J. Sawahata , J.Seo, S.Chen, M.Takiguchi, D.Saito, S.Nemoto, J.Sawahata, J.Seo, S.Chen, M.Takiguchi, D.Saito: Appl. Phys. Lett.89 (2006) 192104. 10.1063/1.2385214Search in Google Scholar

[7] J. Shi , M.V.S.Chandrashekhar, J.Reiherzer, W.J.Schaff, J.Lu, F.J.Disalvo, M.G.Spencer: J. Crystal Growth.310 (2008) 452. 10.1016/j.jcrysgro.2007.10.020Search in Google Scholar

[8] S. Liu , K.Sweatman, S.McDonald, K.Nogita: Materials.11 (2018) 1. PMid:30388831; 10.3390/ma11081384Search in Google Scholar PubMed PubMed Central

[9] J.Y. Zhu , S.-Y.Tang, K.Khoshmanesh: ACS Appl. Mater. Interfaces.8 (2016) 2173. 10.1021/acsami.5b10769Search in Google Scholar PubMed

[10] H. Ge , J.Liu: J. Heat Transf.135 (2013) 0545031. 10.1115/1.4023392Search in Google Scholar

[11] H. Ge , J.Liu: ASME 2013 Int. Mech. Eng. Congr. Expo. (2013).Search in Google Scholar

[12] Y. Zheng , Z.Z.He, J.Yang, J.Liu: Sci. Rep.4 (2014) 1. PMid:24699375; 10.1038/srep04588Search in Google Scholar

[13] S.P. Yatsenko , A.A.Semyannikov, B.G.Semenov, K.A.Chuntonov: J. Less-Common Met.64 (1979) 185. 10.1016/0022-5088(79)90170-XSearch in Google Scholar

[14] A. Iandelli : J. Inorg. Gen. Chem.330 (1964) 221. 10.1002/zaac.19643300315Search in Google Scholar

[15] K.H.J. Buschow , Mooij: J. Less Common Met.97 (1984) L5. 10.1016/0022-5088(84)90042-0Search in Google Scholar

[16] J.W.C. De Vries , R.C.Thiel, K.H.J.Buschow: Phys. B+C.128 (1985) 265. 10.1016/0378-4363(85)90001-4Search in Google Scholar

[17] S. Kirklin , J.E.Saal, B.Meredig, A.Thompson, J.W.Doak, M.Aykol, S.Rühl, C.Wolverton: NPJ Comput. Mater.1 (2015) 15010. 10.1038/npjcompumats.2015.10Search in Google Scholar

[18] A. Jain , S.P.Ong, G.Hautier, W.Chen, W.D.Richards, S.Dacek, S.Cholia, D.Gunter, D.Skinner, G.Ceder, K.A.Persson: APL Mater.1 (2013) 011002. 10.17188/1207032Search in Google Scholar

[19] A.T. Dinsdale : Calphad.15 (1991) 317. 10.4028/0364-5916(91)90030-NSearch in Google Scholar

[20] O. Redlich , A.T.Kister: Ind. Eng. Chem.40 (1948) 345. 10.1021/ie50458a036Search in Google Scholar

[21] H.L. Lukas , S.G.Fries, B.Sundman, Computational Thermodynamics: The CALPHAD Method, Cambridge University Press, (2007). 10.1017/CBO9780511804137Search in Google Scholar

[22] B. Sundman , B.Jansson, J.O.Andersson: Calphad.9 (1985) 153. 10.1016/0364-5916(85)90021-5Search in Google Scholar

Received: 2019-06-13
Accepted: 2019-10-01
Published Online: 2020-03-16
Published in Print: 2020-03-11

© 2020, Carl Hanser Verlag, München

Downloaded on 2.10.2023 from
Scroll to top button