Skip to content
BY 4.0 license Open Access Published by De Gruyter March 16, 2020

Carbon nanotube network as an electron pathway in nanocomposite films

  • Rike Yudianti , Lektro Ganda Hutabarat , Yuyun Irmawati , Henry Widodo , Nanik Indayaningsih and Awan Magfirah

Abstract

The role of a multiwalled carbon nanotube (MWCNT) network embedded in polymer nanocomposite is a key factor to study. Polyvinyl alcohol was used as the polymer matrix for 0.1 –0.4 wt.% functionalised nanotubes in an effort to establish the nanotube's role in nanocomposite films. The fabrication of nanocomposite film was conducted using an easy and simple procedure via the casting technique. Nanocomposite properties show that in the early addition of 0.1 wt.% MWCNT, an isolator–semiconductor transition with 1.1 × 10−8 S cm−1 conductivity occurred. Nanocomposite films were shown to be sensitive to UV light at 250–400 nm and tended to have a high transmission (approximately ∼90 %) within the visible region. Additionally, an MWCNT concentration of 0.3 wt.% in the electron pathway carried charge carriers of approximately 2.1 × 10−7 S cm−1 via a complete electrically-conductive path. As such, the network nanotubes displayed extraordinary properties as reinforcement for nanocomposite films when viewed in terms of mechanical strength and elongation increased in respective ranges of 7.3–18.8 % and 14.9–25.02 %. Upshift of the G-band occurred at approximately 7–26 cm−1, which was indicative of an electron transfer between the nanotube and the matrix.


Correspondence address, Dr. Rike Yudianti, Research Centre for Physics, Indonesian Institute of Sciences, South Tangerang 15314, Indonesia, Tel.: +62(21) 7560570, Fax.: +62(21) 7560554, E-mail: ; , Website: fisika.lipi.go.id

References

[1] H.F.B.C. Brinson : “Characteristics, Applications and Properties of Polymers,” in Polymer Engineering Science and Viscoelasticity, Switzerland: Springer, Boston, MA, 2018, 5597. 10.1007/978-0-387-73861-1Search in Google Scholar

[2] R. Yudianti , H.Onggo: Nanosci. Nanotechnol.2 (2012) 171. 10.5923/j.nn.20120206.04Search in Google Scholar

[3] H. Tang , J.H.Chen, Z.P.Huang, D.Z.Wang, Z.F.Ren, L.H.Nie, Y.F.Kuang, S.Z.Yao: Carbon.42 (2004) 191. 10.1016/j.carbon.2003.10.023Search in Google Scholar

[4] M. Abdel Salam , R.M.Mohamed, A.Y.Obaid: Fullerenes Nanotub. Carbon Nanostructures22 (2014) 765. 10.1080/1536383X.2012.731584Search in Google Scholar

[5] A.A. Ashkarran , M.Fakhari, H.Hamidinezhad, H.Haddadi, M.R.Nourani: J. Mater. Res. Technol.4 (2015) 126. 10.1016/j.jmrt.2014.10.005Search in Google Scholar

[6] M.T. Nguyen , C.K.Nguyen, T.M.P.Vu, Q.Van Duong, T.L.Pham, T.C.Nguyen: Adv. Nat. Sci. Nanosci. Nanotechnol.5 (2014) 0. 10.1088/2043-6262/5/4/045018Search in Google Scholar

[7] S. Luo , Y.Wang, G.Wang, K.Wang, Z.Wang, C.Zhang, B.Wang, Y.Luo, L.Lie, T.Liu: Sci. Rep.7 (2017) 1. PMid:29180692; 10.1038/srep44056Search in Google Scholar PubMed PubMed Central

[8] Z. He , G.Zhou, J.Byun, S.Lee, M.Lim, B.Park, T.Kim, S.Lee, T.Chou: Nanoscale1000 (2019) 5884. PMid:30869716; 10.1039/c9nr01005jSearch in Google Scholar PubMed

[9] M. Liebscher , T.Gartner, L.Tzounis, M.Micusik, PPötschke, M.Stamm, G.Heinrich, B.Voit: Compos. Sci. Technol.101 (2014) 133. 10.1016/j.compscitech.2014.07.009Search in Google Scholar

[10] L. Tzounis , T.Gartner, M.Liebscher, P.Potschke, M.Stamm, B.Voit, G.Heinrich: Polymer (Guildf).55 (2014) 5381. 10.1016/j.polymer.2014.08.048Search in Google Scholar

[11] M.S. Zaros Tzounis , M. LaarutiHegde, MarcoLiebscher, TheoDingemans, PetraPötschkea, Alkiviadis S.Paipetis, Nikolaos E.Zafeiro poulos: Compos. Sci. Technol.156 (2018) 158. 10.1016/j.compscitech.2017.12.030Search in Google Scholar

[12] Teng Fei Kai Jiang Fan Jiang Ren Mu Tong Zhang : Appl. Polym. Sci.131 (2014) 39726. DOI: doi.org/10.1002/app.39726.10.1002/app.39726Search in Google Scholar

[13] D. Maity , K.Rajavel, R.Thangavelu, R.Kumar: Sensors Actuators B. Chem.261 (2018) 297. 10.1016/j.snb.2018.01.152Search in Google Scholar

[14] S. Wang : thesis, Characterization and analysis of electrical conductivity properties of nanotube composites, Florida State University (2005).Search in Google Scholar

[15] Z. He , J-H.Byun, G.Zhou, B-J.Park, T-H.Kim, S-B.Lee, J-W.Yi, M-K.Um, T-W.Chou: Carbon N. Y.146 (2019) 701. 10.1016/j.carbon.2019.02.060Search in Google Scholar

[16] R.P. Mahore , D.K.Burghate, S.B.Kondawar: Adv. Mater. Lett.5 (2014) 400. 10.5185/amlett.2014.amwc.1038Search in Google Scholar

[17] B. Arash , Q.Wang, V.K.Varadan: “nanotube/polymer composites,” (2014) 1. 10.1038/srep06479Search in Google Scholar PubMed PubMed Central

[18] J. Yang , J.Hu, C.Wang, Y.Qin, Z.Guo: Macromol. Mater. Eng.289 (2004) 828. 10.1002/mame.200400049Search in Google Scholar

[19] I.S. Hammad Younes , Md.Mahfuzur Rahman, Amal AlGhaferi: Hindawi J. Nanomater.2017 (2017) 1. Research. 10.1155/2017/6843403Search in Google Scholar

[20] C.-X. Liu , J.-W.Choi: Nanomaterials.2 (2012) 329. PMid:28348312; 10.3390/nano2040329Search in Google Scholar PubMed PubMed Central

[21] H.U. Bo-xing Zhang , Jun-IchiAzuma: RSC Adv. J.5 (2015) 2900. 10.1039/c4ra14090gSearch in Google Scholar

[22] H. Shim , M.Karina, R.Yudianti, L.Indrarti, J.Azuma, H.Uyama: Polym. Technol. Eng.54 (2015) 305. 10.1080/03602559.2014.977428Search in Google Scholar

[23] R. Yudianti , A.Syampurwadi, H.Onggo, M.Karina, and H.Uyama: Polym. Adv. Technol.27 (2016) 1102. 10.1002/pat.3782Search in Google Scholar

[24] R. Yudianti , H.Onggo, Sudirman Y.Saito, T.Iwata, J.Azuma: Open Mater. Sci. J.5 (2011) 242. 10.2174/1874088X01105010242Search in Google Scholar

[25] M.E. Hughes , E.Brandin, J.A.Golovchenko: Nanto Lett.7 (2007) 1191. PMid:17419658; 10.1021/nl062906uSearch in Google Scholar PubMed PubMed Central

[26] G. Wypych : “Photophysics,” in Handbook of Material Weathering, 5th Editio., Science Direct, 2013, 744. 10.1016/C2012-0-07343-7Search in Google Scholar

[27] T.T. Nguyen , S.U.Nguyen, D.T.Phuong, D.C.Nguyen, and A.T.Mai: Adv. Nat. Sci. Nanosci. Nanotechnol.2 (2011) 1. 10.1088/2043-6262/2/3/035015Search in Google Scholar

[28] M. Siegfried .: Compos. Struct., 452–453 (2013) 3593. 10.1016/j.msea.2006.11.066Search in Google Scholar

[29] Y. Zhang , J.Fang, J.Li, Y.Guo, Q.Wang: Polymers (Basel).9 (2017). PMid:30966028; 10.3390/polym9120728Search in Google Scholar PubMed PubMed Central

[30] P. Pötschke , M.H.Arnaldo, H.J.Radusch: Polimery/Polymers57 (2012) 204. 10.14314/polimery.2012.204Search in Google Scholar

[31] H. Abbasi , M.Antunes, J.I.Velasco: Polymers (Basel).10 (2018) 1. PMid:30966383; 10.3390/polym10040348Search in Google Scholar PubMed PubMed Central

[32] I.V. Zaporotskova , N.P.Boroznina, Y.N.Parkhomenko, L.V.Kozhitov: Mod. Electron. Mater.2 (2016) 95. 10.1016/j.moem.2017.02.002Search in Google Scholar

[33] G. Zhou , J-H.Byun, Y.Oh, B-M.Jung, H-J.Cha, D-G.Seong, M-K.Um, S.Hyun. T-W.Chou: ACS Appl. Mater. Interfaces.9 (2017) 4788. 10.1021/acsami.6b12448Search in Google Scholar PubMed

[34] K. Tsirka , L.Tzounis, A.Avgeropoulos, M.Liebscher, V.Mechtcherine, A.S.Paipetis: Compos. Sci. Technol.165 (2018) 240. 10.1016/j.compscitech.2018.07.003Search in Google Scholar

[35] L.I. Nasibulina , I.V.Anoshkin, A.G.Nasibulin, A.Cwirzen, V.Penttala, E.I.Kauppinen: J. Nanomater.2012 (2012) 1. 10.1155/2012/169262Search in Google Scholar

[36] S. Ghoshal : Fibers.5 (2017) 40. 10.3390/fib5040040Search in Google Scholar

[37] K.E. Wise , C.Park, E.J.Siochi, J.S.Harrison: Chem. Phys. Lett.391 (2004) 207. 10.1016/j.cplett.2004.04.096Search in Google Scholar

Received: 2019-06-24
Accepted: 2019-10-04
Published Online: 2020-03-16
Published in Print: 2020-03-11

© 2020, Carl Hanser Verlag, München

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 4.3.2024 from https://www.degruyter.com/document/doi/10.3139/146.111875/html
Scroll to top button