Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 16, 2020

The effect of pulse frequency on the microstructure and surface mechanical properties of composite coatings on the surface of AISI304

Ebrahim Bahramizadeh, Salman Nourouzi and Hamed Jamshidi Aval

Abstract

This study investigated the in-situ formation of TiC–Al2O3 and TiB2–TiC–Al2O3 composite coatings on the surface of austenitic 304 stainless steel by the use of 3TiO2-4Al-3C and 3TiO2-4Al-B4C powder and argon arc cladding technology. The effects of pulse frequency 0–200 Hz on microstructure and mechanical properties of coating are studied. Microstructural study of coatings showed that the high cladding temperature triggered the self-propagating high-temperature synthesis of reinforcement phases TiC, Al2O3, and TiB2 at the surface of 304 stainless steel. The use of pulsed current instead of direct current reduced the hardness of the coating by increasing the dilution. Also, in both groups of coatings, no significant difference was found between the hardness distribution over the coating layer in the specimens coated with pulsed currents at frequencies of 10 and 200 Hz.


Correspondence address, Dr. Hamed Jamshidi Aval, Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Ave., Babol 47148–71167, Iran, Tel.: +98 11 35501808, Fax: +98 11 35501802, E-mail:

References

[1] D.-X. Peng : Ind. Lubr. Tribol.66 (2014) 452. 10.1108/ilt-03-2012-0030Search in Google Scholar

[2] J. Lippold , D.Kotecki: Welding metallurgy and weldability of stainless steels, Wiley (2005).Search in Google Scholar

[3] S. Buytoz , M.Ulutan: Surf. Coat. Technol.200 (2006) 3698. 10.1016/j.surfcoat.2005.02.178Search in Google Scholar

[4] P.F. Mendez , N.Barnes, K.Bell, S.D.Borle, S.S.Gajapathi, S.D.Guest, H.Izadi, A.K.Gol, G.Wood: J. Manuf. Process.16 (2014) 4. 10.1016/j.jmapro.2013.06.011Search in Google Scholar

[5] S. Sapate , A.RamaRao: Tribol. Int.39 (2006) 206. 10.1016/j.triboint.2004.10.013Search in Google Scholar

[6] R. Kacar , M.Acarer: J. Mater. Process. Technol.152 (2004) 91. 10.1016/j.jmatprotec.2004.03.012Search in Google Scholar

[7] Y.-C. Lin , H.-M.Chen, Y.-C.Chen: Mater. Des.47 (2013) 828. 10.1016/j.matdes.2013.01.007Search in Google Scholar

[8] D.L. Olson , T.A.Siewert, S.Liu, G.R.Edwards: Welding, brazing, and soldering, ASM International, 6 (1993). 10.31399/asm.hb.v06.9781627081733Search in Google Scholar

[9] V. Raja , S.Varshney, R.Raman, S.Kulkarni: Corros. Sci.40 (1998) 1609. 10.1016/S0010-938X(97)00174-1Search in Google Scholar

[10] X. Wang , S.Song, Z.Zou, S.Qu: Mater. Sci. Eng. A-Struct.441 (2006) 60. 10.1016/j.msea.2006.06.015Search in Google Scholar

[11] H. Wang , L.Huang, Q.Jiang: Mater. Sci. Eng. A-Struct.407 (2005) 98. 10.1016/j.msea.2005.06.068Search in Google Scholar

[12] S. Selvi , S.Sankaran, R.Srivatsavan: J. Mater. Process. Technol.207 (2008) 356. 10.1016/j.jmatprotec.2008.06.053Search in Google Scholar

[13] J.J. Coronado , H.F.Caicedo, A.L.Gómez: Tribol. Int.42 (2009) 745. 10.1016/j.triboint.2008.10.012Search in Google Scholar

[14] X. Wang , F.Han, X.Liu, S.Qu, Z.Zou: Mater. Sci. Eng. A-Struct.489 (2008) 193. 10.1016/j.msea.2007.12.020Search in Google Scholar

[15] Y.C. Lin , J.B.Bai, J.N.Chen: Adv. Mater. Res.966 (2014) 386. 10.4028/www.scientific.net/AMR.966-967.386Search in Google Scholar

[16] X. Wang , M.Zhang, B.Du: Tribol. lett.41 (2011) 171. 10.1007/s11249-010-9701-6Search in Google Scholar

[17] J. Meng , X.Shi, S.Zhang, M.Wang, F.Xue, B.Liu, W.Cui, L.Biang: Surf. Coat. Technol.374 (2019) 437. 10.1016/j.surfcoat.2019.06.015Search in Google Scholar

[18] C.K. Sahoo , L.Soni, M.Masanta: Surf. Coat. Technol.307 (2016) 17. 10.1016/j.surfcoat.2016.08.056Search in Google Scholar

[19] C.K. Sahoo , M.Masanta: J. Mater. Process. Technol.240 (2017) 126. 10.1016/j.jmatprotec.2016.09.018Search in Google Scholar

[20] S. Mridha , T.Baker: Mater. Sci. Technol. Ser.31 (2015) 337. 10.1179/1743284714Y.0000000530Search in Google Scholar

[21] D.-X. Peng , Y.Kang, Y.-J.Huang: Ind. Lubr. Tribol.66 (2014) 609. 10.1108/ILT-09-2011-0071Search in Google Scholar

[22] A.G. Merzhanov : Adv. Mater.4 (1992) 294. 10.1002/adma.19920040412Search in Google Scholar

[23] M. Sharifitabar , M.H.Sabzevar: Int. J Refract. Met. H.47 (2014) 93. 10.1016/j.ijrmhm.2014.07.006Search in Google Scholar

[24] M. Yousefieh , M.Shamanian, A.Saatchi: J. Iron Steel. Res. Int.18 (2011) 65. 10.1016/S1006-706X(12)60036-3Search in Google Scholar

[25] K. Rajasekhar , C.Harendranath, R.Raman, S.Kulkarni: Mater. Charact.38 (1997) 53. 10.1016/S1044-5803(97)80024-1Search in Google Scholar

[26] C.-C. Hsieh , P.-S.Wang, J.-S.Wang, W.Wu: Sci. World. J.2014 (2014). 1. PMid:24983005; 10.1155/2014/895790Search in Google Scholar PubMed PubMed Central

[27] J. Brooks , N.Yang, J.Krafcik: Sci. Technol. Weld. Join.6 (2001) 412. 10.1179/stw.2001.6.6.412Search in Google Scholar

[28] I.K. Lee , C.P.Chou, C.M.Cheng, I.C.Kuo: Sci. Technol. Weld. Join.8 (2003) 221. 10.1179/136217103225010970Search in Google Scholar

[29] K. Raju , D-H.Yoon: Ceram. Int.42 (2016) 17947. 10.1016/j.ceramint.2016.09.022Search in Google Scholar

[30] X. Wang , M.Zhang, Z.Zou, S.Song, F.Han, S.Qu: Surf. Coat. Technol.200 (2006) 6117. 10.1016/j.surfcoat.2005.09.021Search in Google Scholar

[31] Y. Choi , S.W.Rhee: J. Am. Ceram. Soc.78 (1995) 986. 10.1111/j.1151-2916.1995.tb08426.xSearch in Google Scholar

[32] Y. Chen , H.Wang: Mater. Lett.57 (2003) 1233. 10.1016/S0167-577X(02)00964-3Search in Google Scholar

[33] Z.-T. Wang , X.-T.Zhou, G.-G.Zhao: T. Nonferr. Metal. Soc.18 (2008) 831. 10.1016/S1003-6326(08)60144-2Search in Google Scholar

[34] M. Sharifitabar , J.V.Khaki, M.H.Sabzevar: Int. J. Min. Met. Mater.23 (2016) 193. 10.1007/s12613-016-1227-ySearch in Google Scholar

[35] M. Sharifitabar , J.V.Khaki, M.H.Sabzevar: Surf. Coat. Technol.285 (2016) 47. 10.1016/j.surfcoat.2015.11.019Search in Google Scholar

Received: 2019-02-01
Accepted: 2019-10-27
Published Online: 2020-03-16
Published in Print: 2020-03-11

© 2020, Carl Hanser Verlag, München