Accessible Requires Authentication Published by De Gruyter September 7, 2020

Effect of the synthesis parameters on the structural and magnetic properties of strontium hexaferrite synthesized via the Pechini method

Alfonso Enrique Ramírez Sanabria, Norleth Jairo Solarte Ordoñez, Valeria Nastar Córdova, José Antonio Huamani Coaquira and Sonia Gaona Jurado


Strontium hexaferrite (SrFe12O19–SF6) is a magnetic material of great interest in various research fields due to its high coercive field (Hc) and its high saturation magnetization. In this research, the effect of synthesis parameters on the structure and magnetic response was studied. It was evidenced that the parameters such as pH value and iron precursor type have a strong influence on the crystalline structure of the samples, since the pure phase of strontium hexaferrite was obtained by two different pathways (ferrous and ferric) and only at pH = 5. It was determined that there are differences in the magnetic response of both samples; the ferrous pathway generates the largest values of both saturation magnetization (74.3 emu g−1) and coercive field (5.2 kOe).

Correspondence address, Docteur de l′Université de Poitiers, Alfonso Enrique Ramírez Sanabria, Catalysis Group, Department of Chemistry, University of Cauca, Calle 5 No. 4-70, Popayán, 190001, Colombia, Tel.: +57 313-7387469, Fax: +57 (2)-8209900, E-mail: , Web:


[1] V.G. Harris , A.Geiler, Y.Chen, S.D.Yoon, M.Wu, A.Yang, Z.Chen, P.He, P.V.Parimi, X.Zuo, C.E.Patton, M.Abe, O.Acher, C.Vittoria: J. Magn. Magn. Mater.321 (2009) 20352047. 10.1016/j.jmmm.2008.10.020 Search in Google Scholar

[2] T. Xie , L.Xu, C.Liu: Powder Technol.232 (2012) 8792. 10.1016/j.powtec.2012.08.015 Search in Google Scholar

[3] D.V. Ruikar , P.B.Kashid, V.R.Patil, V.Puri: Appl. Surf. Sci.265 (2013) 475479. 10.1016/j.apsusc.2012.11.031 Search in Google Scholar

[4] X. Tang , Y.M.Wang, Z.Luo, L.S.Wang, R.Y.Hong, W.G.Feng: Prog. Org. Coat.75(s 1–2):124130. 10.1016/j.porgcoat.2012.04.006 Search in Google Scholar

[5] J. Kreisel , H.Vincent, F.Tasset, M.Paté, J.P.Ganne: J. Magn. Magn. Mater.224 (2001) 1729. 10.1016/S0304-8853(00)01355-X Search in Google Scholar

[6] M. Cernea , S.-G.Sandu, C.Galassi, R.Radu, V.Kuncser: J. Alloys Compd.561 (2013) 121128. 10.1016/j.jallcom.2013.01.081 Search in Google Scholar

[7] H. Hsiang , R.Q.Yao: Mater. Chem. Phys.104 (2007) 14. 10.1016/j.matchemphys.2007.02.030 Search in Google Scholar

[8] W. Yongfei , L.Qiaoling, Z.Cunrui, J.Hongxia: J. Alloys Compd.467 (2009) 284287. 10.1016/j.jallcom.2007.12.037 Search in Google Scholar

[9] A.E. Ramírez , N.J.Solarte, L.H.Singh, J.A.H.Coaquira, S.Gaona J.: J. Magn. Magn. Mater.438 (2017) 100106. 10.1016/j.jmmm.2017.04.042 Search in Google Scholar

[10] Barium Titanium Citrate, Barium Titanate and processes for producing some, US Patent: 3, 231, pp. 218, (1966). Search in Google Scholar

[11] S.R. Janasi , M.Emura, F.J.G.Landgraf, D.Rodrigues: J. Magn. Magn. Mater.238 (2002) 168172. 10.1016/S0304-8853(01)00857-5 Search in Google Scholar

[12] S.R. Janasi , M.Emura, F.J.G.Landgraf, D.Rodrigues: J. Magn. Magn. Mater.238 (2002) 168172. 10.1016/S0304-8853(01)00857-5 Search in Google Scholar

[13] Y.H.O. Muñoz , M.Ponce, J.E.R.Páez: Powder Technol.279 (2015), 8695. 10.1016/j.powtec.2015.03.049 Search in Google Scholar

[14] H. Zhang , D.Zeng, Z.Liu: J. Magn. Magn. Mater.322 (2010) 23752380. 10.1016/j.jmmm.2010.02.040 Search in Google Scholar

[15] F. Esper : Journal de Physique Colloques, 1977, 38 (C1), pp. C1-69-C1-72. 10.1051/jphyscol:1977114 Search in Google Scholar

[16] J.H. de Araújo , J.M.Soares, M.F.Giani, F.L.A.Machado, J.B.M.da Cunha: J. Magn. Magn. Mater.343 (2013) 203207. 10.1016/j.jmmm.2013.04.077 Search in Google Scholar

[17] R.C. Pullar : Prog. Mater. Sci.57 (2012) 11911334. 10.1016/j.pmatsci.2012.04.001 Search in Google Scholar

Received: 2020-01-18
Accepted: 2020-04-23
Published Online: 2020-09-07
Published in Print: 2020-09-16

© 2020, Carl Hanser Verlag, München