Abstract
Copper nanoparticle arrays were synthesized by the aqueous phase chemical reduction of Cu2+ to Cu0 using glucose as an environmentally benign reducing agent. The UV absorption spectrum exhibited an absorption band at 554 nm revealing the presence of metallic copper nanoparticles. The catalytic properties of the synthesized copper nanoparticle arrays were investigated by reducing 4-nitrophenol (Nip) into 4-aminophenol (Amp) in the presence of NaBH4. In comparison to the commercial copper metal powder, copper nanoparticle arrays exhibited highly improved catalytic performance on the reduction of nitrophenol. The current synthesis approach of pure copper nanoparticle arrays does not require rigorous conditions or toxic agents, and hence it is a rapid, efficient, and green approach for the development of active metallic catalysts.
References
[1] M.B. Gawande, A. Goswami, F.X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R.S. Varma: Chem. Rev. 116 (2016) .3722 –3811. PMid:26935812; DOI:10.1021/acs.chemrev.5b0048210.1021/acs.chemrev.5b00482Search in Google Scholar PubMed
[2] P.V. Kamat: Acc. Chem. Res. 50 (2017) 527. PMid:28945391; DOI:10.1021/acs.accounts.6b0052810.1021/acs.accounts.6b00528Search in Google Scholar PubMed
[3] J. Luo, S. Jiang, H. Zhang, J. Jiang, X. Liu: Anal. Chim. Acta 709 (2012) 47. PMid:22122930; DOI:10.1016/j.aca.2011.10.02510.1016/j.aca.2011.10.025Search in Google Scholar PubMed
[4] N.A. Dhas, C.P. Raj, A. Gedanken: Chem. Mater. 10 (1998) 1446. DOI:10.1021/cm970826910.1021/cm9708269Search in Google Scholar
[5] G. Vitulli, M. Bernini, S. Bertozzi, E. Pitzalis, P. Salvadori, S. Coluccia, G. Martra: Chem. Mater. 14 (2002) 1183. DOI:10.1021/cm011199x10.1021/cm011199xSearch in Google Scholar
[6] H.H. Huang, F.Q. Yan, Y.M. Kek, C.H. Chew, G.Q. Xu, W. Ji, P.S. Oh, S.H. Tang: Langmuir 13 (1997) 172. DOI:10.1021/la960549510.1021/la9605495Search in Google Scholar
[7] I. Lisiecki, M.P. Pileni: J. Am. Chem. Soc. 115 (1993) 3887. DOI:10.1021/ja00063a00610.1021/ja00063a006Search in Google Scholar
[8] K.J. Ziegler, R.C. Doty, K.P. Johnston, B.A. Korgel: J. Am. Chem. Soc. 123 (2001) 7797. PMid:11493053; DOI:10.1021/ja010824w10.1021/ja010824wSearch in Google Scholar PubMed
[9] M.S. Yeh, Y.S. Yang, Y.P. Lee, H.F. Lee, Y.H. Yeh, C.S. Yeh: J. Phys. Chem. B 103 (1999) 6851. DOI:10.1021/jp98416310.1021/jp984163Search in Google Scholar
[10] I. Lisiecki, F. Billoudet, M. Pileni: J. Phys. Chem. 100 (1996) 4160 –4166. DOI:10.1021/jp952383710.1021/jp9523837Search in Google Scholar
[11] A.A. Athawale, P.P. Katre,M. Kumar,M.B.Majumdar: Mater. Chem. Phys. 91 (2005) 507. DOI:10.1016/j.matchemphys.2004.12.01710.1016/j.matchemphys.2004.12.017Search in Google Scholar
[12] S.H. Wu, D.H. Chen: J. Colloid. Interface Sci. 273 (2004) 165. PMid:15051447; DOI:10.1016/j.jcis.2004.01.07110.1016/j.jcis.2004.01.071Search in Google Scholar PubMed
[13] A.A. Gokhale, J.A. Dumesic, M. Mavrikakis: J. Am. Chem. Soc. 130 (2008) 1402-1414. PMid:18181624; DOI:10.1021/ja076823710.1021/ja0768237Search in Google Scholar PubMed
[14] S. Park, R.J. Gorte, J.M. Vohs: Appl. Catal. A Gen. 200 (2000) 55–61. DOI:10.1016/S0926-860X(00)00650-510.1016/S0926-860X(00)00650-5Search in Google Scholar
[15] J.C. Johnson, H. Yan, P. Yang, R.J. Saykally: J. Phys. Chem. B 107 (2003) 8816–8828. DOI:10.1021/jp034482n10.1021/jp034482nSearch in Google Scholar
[16] J. Creighton, D. Eadon: J. Chem. Soc. Faraday Trans. 87 (1991) 3881. DOI:10.1039/FT991870388110.1039/FT9918703881Search in Google Scholar
[17] M. Valodkar, P.S. Rathore, R.N. Jadeja, M. Thounaojam, R.V. Devkar, S. Thakore: J. Hazard. Mater. 201 (2012) 244 –249. PMid:22178277; DOI:10.1016/j.jhazmat.2011.11.07710.1016/j.jhazmat.2011.11.077Search in Google Scholar PubMed
[18] M. Raja, J. Subha, F.B. Ali, S.H. Ryu: J. Manuf. Mater. Process 23 (2008) 782. DOI:10.1080/1042691080238208010.1080/10426910802382080Search in Google Scholar
[19] M. Aslam, G. Gopakumar, T.L. Shoba, I.S. Mulla, K. Vijayamohanan, S.K. Kulkarni, J. Urban, W. Vogel: J. Colloid Interface Sci. 255 (2002) 79. PMid:12702371; DOI:10.1006/jcis.2002.855810.1006/jcis.2002.8558Search in Google Scholar PubMed
[20] S. Panigrahi, S. Basu, S. Praharaj, S. Pande, S. Jana, A. Pal, S.K. Ghosh, T. Pal: J. Phys. Chem. C 111 (2007) 4596. DOI:10.1021/jp067554u10.1021/jp067554uSearch in Google Scholar
[21] K. Hayakawa, T. Yoshimura, K. Esumi: Langmuir 19 (2003) 5517. DOI:10.1021/la034339μ10.1021/la034339μSearch in Google Scholar
[22] N.S. Chaubal, M.R. Sawant: J. Mol. Catal. A Chem. 261 (2007) 232–241. DOI:10.1016/j.molcata.2006.06.03310.1016/j.molcata.2006.06.033Search in Google Scholar
[23] F.A. Khan, J. Dash, C. Sudheer, R.K. Gupta: Tetrahedron Lett. 44 (2003) 7783–7787. DOI:10.1016/j.tetlet.2003.08.08010.1016/j.tetlet.2003.08.080Search in Google Scholar
[24] M. Li, Y. Su, J. Hu, H. Geng, H. Wei, Z. Yang, Y. Zhang: Mater. Res.Bull. 83 (2016) 329 –335. DOI:10.1016/j.materresbull.2016.04.02210.1016/j.materresbull.2016.04.022Search in Google Scholar
[25] P. Deka, R.C. Deka, P. Bharali: New J. Chem. 38 (2014) 1789 – 1793. DOI:10.1039/c3nj01589k10.1039/c3nj01589kSearch in Google Scholar
[26] T. Aditya, J. Jana, N.K. Singh, A. Pal, T. Pal: ACS Omega 2 (2017) 1968– 1984. PMid:31457555; DOI:10.1021/acsomega.6b0044710.1021/acsomega.6b00447Search in Google Scholar PubMed PubMed Central
[27] A. Taghizadeh, K. Rad-Moghadam: J. Clean. Prod. 198 (2018) 1105 –1119. DOI:10.1016/j.jclepro.2018.07.04210.1016/j.jclepro.2018.07.042Search in Google Scholar
[28] D.Z. Husein, R. Hassanien, M.F. Al-Hakkani: Heliyon 5 (2019) ɛ02339. PMid:31485528; DOI:10.1016/j.heliyon.2019.ɛ0233910.1016/j.heliyon.2019.ɛ02339Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany