Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 30, 2021

Synthesis and characterization of nano NiZrO3 for optical and dielectric applications

  • Fathima Riyaz , Vadakkethil Lalitha BhaiPushpa and Vidya Sukumaran EMAIL logo


Nanocrystalline semiconducting NiZrO3 is prepared via a modified combustion process. The X-ray diffraction pattern shows that the so formed nanopowder is single phase and has an orthorhombic structure. The crystalline size of the as-prepared powder determined using the Scherrer formulae is 22 nm. The UV–visible spectrum revealed that nano NiZrO3 exhibited an intense absorption band in the ultra violet region and the calculated band gap is 4.25 eV, which suggest the material is a wide band gap semiconductor. The material shows good photo luminescence behaviour with intense emission in the blue region. The material is sintered at a temperature of 1220°C in a microwave furnace. Variation of dielectric properties of this material with frequency and temperature are also analyzed. This material shows good optical and dielectric properties which make it an ideal multi-functional material.

Dr. S. Vidya Materials Research Lab, Department of Physics Sree Narayana College Kollam 691001 India Tel.: +91 9745464525 E-mail:


[1] I.V. Pishch, E.V. Radion: Synthesis of pigments based on perovskite. Glass and Ceram. 55 (1998) 290 –291. DOI:10.1007/2FBF0269476910.1007/2FBF02694769Search in Google Scholar

[2] I.V. Pishch, E.V. Radion: Glass Ceram. 55 (1998) 314 –316. DOI:10.1007/BF0269477710.1007/BF02694777Search in Google Scholar

[3] G. Angajala, S. Radhakrishnan: Inflammation and Cell Signaling. DOI:10.14800/ics.27110.14800/ics.271Search in Google Scholar

[4] M. Matsuno, C.S. Bonifacio, J.F. Rufner, A.M. Thron, T.B. Holland, A.K. Mukherjee, K. van Benthem: J. Mater. Res. 27 (2012) 2431 –2440. DOI:10.1557/jmr.2012.25610.1557/jmr.2012.256Search in Google Scholar

[5] D.V. Chashin, Y.K. Fetisov, K.E. Kamentsev, G. Srinivasan: Appl. Phys. Lett. 92 (2008) 102511. DOI:10.1063/1.289660710.1063/1.2896607Search in Google Scholar

[6] D.A. Pan, Y. Bai, A.A. Volinsky, W.Y. Chu, L.J. Qiao: Appl. Phys. Lett. 92 (2008) 052904. DOI:10.1063/1.283000910.1063/1.2830009Search in Google Scholar

[7] Y. Yu, M. Guo, M. Yuan, W. Liu, J. Hu: Biosens. Bioelectron. 77 (2016) 215–219. DOI:10.1016/j.bios.2015.09.03610.1016/j.bios.2015.09.036Search in Google Scholar PubMed

[8] N. Guskos, J. Typek, G. Zolnierkiewicz, E. Kusiak-Nejman, S. Mozia, A.W. Morawski: Nanomater. for Security, Magnetic properties of cobalt and nitrogen co-modified titanium dioxide nanocomposites. (2016) 109 –125. DOI:10.1007/978-94-017-7593-9_910.1007/978-94-017-7593-9_9Search in Google Scholar

[9] S. Buddee, C. Suwanchawalit, S. Wongnawa: Dig. J. Nanomater. Bios., 12 (2017) 829–839.Search in Google Scholar

[10] W. Sangchay, Sikong Lek, K. Ubolchollakhat: Dig. J. Nanomater. Bios. 10 (2015) 1469 –1473.Search in Google Scholar

[11] R. Nirmala, H.Y. Kim, C. Yi, N.A. Barakat, R. Navamathavan, M. El-Newehy: Int. J. Hydrogen Energ. 37 (2012) 10036–10045. DOI:10.1016/j.ijhydene.2012.03.16410.1016/j.ijhydene.2012.03.164Search in Google Scholar

[12] J. Chen, Y. Zhou, R. Li, X. Wang, G.Z. Chen: Appl. Surf. Sci. 464 (2019) 716–724. DOI:10.1016/j.apsusc.2018.09.09110.1016/j.apsusc.2018.09.091Search in Google Scholar

[13] A. Sharma, B.K Lee: J. Environ. Manage. 155 (2015) 114–122. PMid:25819351; DOI:10.1016/j.jenvman.2015.03.00810.1016/j.jenvman.2015.03.008Search in Google Scholar PubMed

[14] S.G. Krishnan, P.S. Archana, B. Vidyadharan, I.I. Misnon, B.L. Vijayan, V.M. Nair, A. Gupta, R. Jose: J. Alloys Compd. 684 (2016) 328–334. DOI:10.1016/j.jallcom.2016.05.18310.1016/j.jallcom.2016.05.183Search in Google Scholar

[15] Y. Faheem, M. Shoaib: J. of the Am. Ceram. Soc. 89 (2006) 2034 –2037. DOI:10.1111/j.1551-2916.2006.01002.x10.1111/j.1551-2916.2006.01002.xSearch in Google Scholar

[16] T.T. Pham, C. Nguyen-Huy, E.W. Shin: Appl. Surf. Sci. 377 (2016) 301–310. DOI:10.1016/j.apsusc.2016.03.14410.1016/j.apsusc.2016.03.144Search in Google Scholar

[17] M. Hassan, S. Riaz, S. Naseem: Mater. Today Proc. 2 (2015) 5251 –5255. DOI:10.1016/j.matpr.2015.11.03110.1016/j.matpr.2015.11.031Search in Google Scholar

[18] G.N. Shao, S.J. Jeon, M.S. Haider, N. Abbass, H.T. Kim: J. Colloid Interface Sci. 474 (2016) 179–189. PMid:27124812; DOI:10.1016/j.jcis.2016.04.02410.1016/j.jcis.2016.04.024Search in Google Scholar PubMed

[19] M. Shaban, A.M. Ahmed, N. Shehata, M.A. Betiha, A.M. Rabie: J. Colloid interface Sci. 555 (2019) 31–41. PMid:31377646; DOI:10.1016/j.jcis.2019.07.07010.1016/j.jcis.2019.07.070Search in Google Scholar PubMed

[20] O. Mangla, S. Roy: Int. Online Conference on Nanomater. 1–15 (2018). DOI:10.3390/IOCN_2018-1-0548610.3390/IOCN_2018-1-05486Search in Google Scholar

Received: 2020-04-27
Accepted: 2020-07-05
Published Online: 2021-12-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 11.12.2023 from
Scroll to top button