Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 30, 2021

A promising rosy future for supercapacitors: Suitability of MoS2 hollow nanoroses for supercapacitor electrodes

J. S. Arya Nair, S. Chirag and K. Y. Sandhya

Abstract

In this work, we investigate the supercapacitive properties of MoS2 hollow nano-roses with an open cavity at the centre. The synthesized nano MoS2 delivered specific capacitance of 180 F g–1 at 1 A g–1, whereas it was around 22 F g–1 for the bulk MoS2, which was synthesized in the absence of the micelle. The cycling stability was very high and retained 98% up to 500 cycles, 85% after 3500 cycles and 80% of the initial capacity at 5000 cycles. The enhanced specific capacitance and cycling stability of the nano MoS2 is probably due to its flower-shaped morphology which consist of thin sheets of MoS2 and with a hollow cavity which increases the accessible surface area and stability, respectively.


K.Y. Sandhya Associate Professor Department of Chemistry Indian Institute of Space Science and Technology, IIST Valiamala Post Pin. 695-547 Thiruvananthapuram Kerala India Tel.: +91 71-2568551, +91 9846430155

  1. This work was supported by Indian Institute of Space Science and Technology, IIST, Thiruvananthapuram.

References

[1] B.B. Garcia, S.L. Candelaria, D. Liu, S. Sepheri, J.A. Cruz, G. Cao: Renew. Energy. 36 (2011) 1788–1794. DOI:10.1016/j.renene.2010.11.03010.1016/j.renene.2010.11.030Search in Google Scholar

[2] X. Zhang, Z. Zhang, H. Pan, W. Salman, Y. Yuan, Y. Liu: Energy Convers. Manag. 118 (2016) 287–294. DOI:10.1016/j.enconman.2016.04.01210.1016/j.enconman.2016.04.012Search in Google Scholar

[3] T. Stephenson, Z. Li, B. Olsen, D. Mitlin: Energy Environ. Sci. 7 (2014) 209–231. DOI:10.1039/C3EE42591F10.1039/C3EE42591FSearch in Google Scholar

[4] C. Koenigsmann, S.S. Wong: Energy Environ. Sci. 4 (2011) 1161 –1176. DOI:10.1039/C0EE00197J10.1039/C0EE00197JSearch in Google Scholar

[5] T.M. Gür: Energy Environ. Sci. 11 (2018) 2696–2767. DOI:10.1039/C8EE01419A10.1039/C8EE01419ASearch in Google Scholar

[6] G. Xu, B. Ding, P. Nie, L. Shen, H. Dou, X. Zhang,: ACS Appl. Mater. Interfaces 6 (2014) 194–199. PMid:24344876; DOI:10.1021/am403872810.1021/am4038728Search in Google Scholar

[7] A. Noori, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi: Chem. Soc. Rev. 48 (2019) 1272– 1341. PMid:30741286; DOI:10.1039/C8CS00581H10.1039/C8CS00581HSearch in Google Scholar

[8] Y. Wang, Y. Song, Y. Xia: Chem. Soc. Rev. 45 (2016) 5925 – 5950. PMid:27545205; DOI:10.1039/C5CS00580A10.1039/C5CS00580ASearch in Google Scholar

[9] A.M. Abioye, F.N. Ani: Renew. Sust. Energ. Rev. 52 (2015) 1282 –1293. DOI:10.1016/j.rser.2015.07.12910.1016/j.rser.2015.07.129Search in Google Scholar

[10] Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, E. Xie : ACS Nano 7 (2013) 174–182. DOI:10.1021/nn304833τ10.1021/nn304833τSearch in Google Scholar

[11] X. Wang, Y. Xie, Z. Cai, N. Xiong, Z. Xu, M. Li, Q. Feng, W. Zhou, K. Pan: J. Alloys Compd. 739 (2018) 568–576. DOI:10.1021/nn302063τ10.1021/nn302063τSearch in Google Scholar

[12] E.G. da SilveiraFirmiano, A.C. Rabelo, C.J. Dalmaschio, A.N. Pinheiro, E.C. Pereira, W.H. Schreiner, E.R. Leite: Adv. Energy Mater. 4 (2014) 1301380. DOI:10.1002/aenm.20130138010.1002/aenm.201301380Search in Google Scholar

[13] R. Aswathi, K.Y. Sandhya: J. Mater. Chem. A. 6 (2018) 14602 – 14613. DOI:10.1039/C8TA00476E10.1039/C8TA00476ESearch in Google Scholar

[14] K.S. Kumar, N. Choudhary, Y. Jung, J. Thomas: ACS Energy Lett. 3 (2018) 482–495. DOI:10.1021/acsenergylett.7b0116910.1021/acsenergylett.7b01169Search in Google Scholar

[15] W.-J. Zhang, K.-J. Huang: Inorg. Chem. Front. 4 (2017) 1602 – 1620. DOI:10.1039/C7QI00515F10.1039/C7QI00515FSearch in Google Scholar

[16] A. Ramachandran, A.N. J S, S. KarunakaranYesodha: ACS Sustain. Chem. Eng. 7 (2019) 6732–6743. DOI:10.1021/acssuschemeng.8b0599610.1021/acssuschemeng.8b05996Search in Google Scholar

[17] Y.H. Kim, K.Y. Kim, Y.R. Choi, Y.-S. Shim, J.-M. Jeon, J.-H. Lee, S.Y. Kim, S. Han, H.W. Jang: J. Mater. Chem. A. 4 (2016) 6070 – 6076. DOI:10.1039/C6TA01277A10.1039/C6TA01277ASearch in Google Scholar

[18] V. Agarwal, K. Chatterjee: Nanoscale. 10 (2018) 16365 –16397. PMid:30151537; DOI:10.1039/C8NR01395K10.1039/C8NR01395KSearch in Google Scholar

[19] Q. Xiang, J. Yu, M. Jaroniec: J. Am. Chem. Soc. 134 (2012) 6575 –6578. PMid:22458309; DOI:10.1021/ja302846n10.1021/ja302846nSearch in Google Scholar

[20] W. Bi, C. Wu: R. Soc. Chem. 58 (2017) 334–368. PMid:28161268; DOI:10.1039/978178801030610.1039/9781788010306Search in Google Scholar

[21] X. Zhou, B. Xu, Z. Lin, D. Shu, L. Ma: J. Nanosci. Nanotechnol. 14 (2014) 7250–7254. DOI:10.1166/jnn.2014.892910.1166/jnn.2014.8929Search in Google Scholar

[22] H. Gupta, S. Chakrabarti, S. Mothkuri, B. Padya, T.N. Rao, P.K. Jain: Materials Today: Proceedings. 26 (2020) 20 –24. DOI:10.1016/j.matpr.2019.04.19810.1016/j.matpr.2019.04.198Search in Google Scholar

[23] J.S.A. Nair, R. Aswathi, K.Y. Sandhya: SN Applied Sciences 1 (2019) 508. DOI:10.1007/τ42452-019-0528-y10.1007/τ42452-019-0528-ySearch in Google Scholar

Received: 2020-03-30
Accepted: 2020-08-07
Published Online: 2021-12-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany