Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 30, 2021

A promising rosy future for supercapacitors: Suitability of MoS2 hollow nanoroses for supercapacitor electrodes

  • J. S. Arya Nair , S. Chirag and K. Y. Sandhya EMAIL logo


In this work, we investigate the supercapacitive properties of MoS2 hollow nano-roses with an open cavity at the centre. The synthesized nano MoS2 delivered specific capacitance of 180 F g–1 at 1 A g–1, whereas it was around 22 F g–1 for the bulk MoS2, which was synthesized in the absence of the micelle. The cycling stability was very high and retained 98% up to 500 cycles, 85% after 3500 cycles and 80% of the initial capacity at 5000 cycles. The enhanced specific capacitance and cycling stability of the nano MoS2 is probably due to its flower-shaped morphology which consist of thin sheets of MoS2 and with a hollow cavity which increases the accessible surface area and stability, respectively.

K.Y. Sandhya Associate Professor Department of Chemistry Indian Institute of Space Science and Technology, IIST Valiamala Post Pin. 695-547 Thiruvananthapuram Kerala India Tel.: +91 71-2568551, +91 9846430155

  1. This work was supported by Indian Institute of Space Science and Technology, IIST, Thiruvananthapuram.


[1] B.B. Garcia, S.L. Candelaria, D. Liu, S. Sepheri, J.A. Cruz, G. Cao: Renew. Energy. 36 (2011) 1788–1794. DOI:10.1016/j.renene.2010.11.03010.1016/j.renene.2010.11.030Search in Google Scholar

[2] X. Zhang, Z. Zhang, H. Pan, W. Salman, Y. Yuan, Y. Liu: Energy Convers. Manag. 118 (2016) 287–294. DOI:10.1016/j.enconman.2016.04.01210.1016/j.enconman.2016.04.012Search in Google Scholar

[3] T. Stephenson, Z. Li, B. Olsen, D. Mitlin: Energy Environ. Sci. 7 (2014) 209–231. DOI:10.1039/C3EE42591F10.1039/C3EE42591FSearch in Google Scholar

[4] C. Koenigsmann, S.S. Wong: Energy Environ. Sci. 4 (2011) 1161 –1176. DOI:10.1039/C0EE00197J10.1039/C0EE00197JSearch in Google Scholar

[5] T.M. Gür: Energy Environ. Sci. 11 (2018) 2696–2767. DOI:10.1039/C8EE01419A10.1039/C8EE01419ASearch in Google Scholar

[6] G. Xu, B. Ding, P. Nie, L. Shen, H. Dou, X. Zhang,: ACS Appl. Mater. Interfaces 6 (2014) 194–199. PMid:24344876; DOI:10.1021/am403872810.1021/am4038728Search in Google Scholar PubMed

[7] A. Noori, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi: Chem. Soc. Rev. 48 (2019) 1272– 1341. PMid:30741286; DOI:10.1039/C8CS00581H10.1039/C8CS00581HSearch in Google Scholar PubMed

[8] Y. Wang, Y. Song, Y. Xia: Chem. Soc. Rev. 45 (2016) 5925 – 5950. PMid:27545205; DOI:10.1039/C5CS00580A10.1039/C5CS00580ASearch in Google Scholar

[9] A.M. Abioye, F.N. Ani: Renew. Sust. Energ. Rev. 52 (2015) 1282 –1293. DOI:10.1016/j.rser.2015.07.12910.1016/j.rser.2015.07.129Search in Google Scholar

[10] Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, E. Xie : ACS Nano 7 (2013) 174–182. DOI:10.1021/nn304833τ10.1021/nn304833τSearch in Google Scholar

[11] X. Wang, Y. Xie, Z. Cai, N. Xiong, Z. Xu, M. Li, Q. Feng, W. Zhou, K. Pan: J. Alloys Compd. 739 (2018) 568–576. DOI:10.1021/nn302063τ10.1021/nn302063τSearch in Google Scholar

[12] E.G. da SilveiraFirmiano, A.C. Rabelo, C.J. Dalmaschio, A.N. Pinheiro, E.C. Pereira, W.H. Schreiner, E.R. Leite: Adv. Energy Mater. 4 (2014) 1301380. DOI:10.1002/aenm.20130138010.1002/aenm.201301380Search in Google Scholar

[13] R. Aswathi, K.Y. Sandhya: J. Mater. Chem. A. 6 (2018) 14602 – 14613. DOI:10.1039/C8TA00476E10.1039/C8TA00476ESearch in Google Scholar

[14] K.S. Kumar, N. Choudhary, Y. Jung, J. Thomas: ACS Energy Lett. 3 (2018) 482–495. DOI:10.1021/acsenergylett.7b0116910.1021/acsenergylett.7b01169Search in Google Scholar

[15] W.-J. Zhang, K.-J. Huang: Inorg. Chem. Front. 4 (2017) 1602 – 1620. DOI:10.1039/C7QI00515F10.1039/C7QI00515FSearch in Google Scholar

[16] A. Ramachandran, A.N. J S, S. KarunakaranYesodha: ACS Sustain. Chem. Eng. 7 (2019) 6732–6743. DOI:10.1021/acssuschemeng.8b0599610.1021/acssuschemeng.8b05996Search in Google Scholar

[17] Y.H. Kim, K.Y. Kim, Y.R. Choi, Y.-S. Shim, J.-M. Jeon, J.-H. Lee, S.Y. Kim, S. Han, H.W. Jang: J. Mater. Chem. A. 4 (2016) 6070 – 6076. DOI:10.1039/C6TA01277A10.1039/C6TA01277ASearch in Google Scholar

[18] V. Agarwal, K. Chatterjee: Nanoscale. 10 (2018) 16365 –16397. PMid:30151537; DOI:10.1039/C8NR01395K10.1039/C8NR01395KSearch in Google Scholar

[19] Q. Xiang, J. Yu, M. Jaroniec: J. Am. Chem. Soc. 134 (2012) 6575 –6578. PMid:22458309; DOI:10.1021/ja302846n10.1021/ja302846nSearch in Google Scholar PubMed

[20] W. Bi, C. Wu: R. Soc. Chem. 58 (2017) 334–368. PMid:28161268; DOI:10.1039/978178801030610.1039/9781788010306Search in Google Scholar

[21] X. Zhou, B. Xu, Z. Lin, D. Shu, L. Ma: J. Nanosci. Nanotechnol. 14 (2014) 7250–7254. DOI:10.1166/jnn.2014.892910.1166/jnn.2014.8929Search in Google Scholar PubMed

[22] H. Gupta, S. Chakrabarti, S. Mothkuri, B. Padya, T.N. Rao, P.K. Jain: Materials Today: Proceedings. 26 (2020) 20 –24. DOI:10.1016/j.matpr.2019.04.19810.1016/j.matpr.2019.04.198Search in Google Scholar

[23] J.S.A. Nair, R. Aswathi, K.Y. Sandhya: SN Applied Sciences 1 (2019) 508. DOI:10.1007/τ42452-019-0528-y10.1007/τ42452-019-0528-ySearch in Google Scholar

Received: 2020-03-30
Accepted: 2020-08-07
Published Online: 2021-12-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 25.2.2024 from
Scroll to top button