Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 30, 2021

Bio-synthesis, characterization and antibacterial studies of ZnO nanoparticles

B. R. Aswathy, Dalia Vishnudasan and P. K. Manoj

Abstract

Zinc oxide, a well-known inorganic metal oxide, in nanoparticle form exhibits photo-catalysis, antimicrobial behavior and is also employed in energy cells as well as sensor devices. In the present study, zinc oxide nanoparticles (ZnO NPs) were synthesized using Adathoda beddomei (A. Beddomei) leaf extract as well as Plectranthus barbatus (P. Barbatus) leaf extract. X-ray diffraction studies confirmed the presence of hexagonal wurtzite structure of ZnO NPs having the least particle size 18–24 nm, with preferential growth along (101) plane. The UV–visible absorbance spectrum of ZnO NPs exhibited the absorbance band in the range 371– 375 nm. Photo luminescence spectra dominated by a strong luminescence peak at ∼384–394 nm followed by low intensity peaks at ∼444–487 nm. Fourier transform infrared spectra confirmed the presence of ZnO NPs as well as the functional groups of plant extracts. Antibacterial properties of synthesized ZnO NPs were evaluated against Gram-negative bacteria–Escherchia coli (E. coli) and Gram-positive bacteria–Listeria monocytogenes. Both bio-synthesized ZnO NPs exhibit significant antibacterial activity only against E. coli. The zones of inhibition were found to be 7 mm and 9 mm for A. Beddomei and P. Barbatus respectively. This study demonstrates utilization of A. Beddomei and P. Barbatus leaf extract for the efficient synthesis of ZnO NPs using a biosynthesis method to obtain significant antibacterial activity.


Aswathy BR Assistant Professor Department of Physics Sree Narayana College for Women Kollam Kerala India Tel.: +91-9400147645

Acknowledgments

We gratefully acknowledge Cashew Export Promotion Council of India (CEPCI), Kollam, Kerala for providing Antibacterial studies and Department of Physics, Bishop Moore College, Mavelikara, Kerala for providing UV and PL analysis and would also like to acknowledge T KM College of Arts and Science, Kollam, Kerala (Department of Science and Technology, Govt. of India (FIST–SR/ FST/College-213/2014(C)), FIST No. 101, C.Dy.No. 1684/IFD/2015– 2016) for XRD and FTIR analysis.

References

[1] Z. Deng, M. Chen, G. Gu, L. Wu: J. Phys. Chem. B 112 1 (2008) 16–22. PMid:18067281; DOI:10.1021/jp077662w10.1021/jp077662wSearch in Google Scholar

[2] S.J. Yang, C.R. Park: Nanotechnology 19 (2008) 035609. DOI:10.1088/0957-4484/19/03/03560910.1088/0957-4484/19/03/035609Search in Google Scholar

[3] H. Vahdat Vasei, S.M. Masoudpanah, M. Adelia, M.R. Aboutalebi, M. Habibollahzadeh: Mater. Res. Bull. 117 (2019) 72–77. DOI:10.1016/j.materresbull.2019.04.02410.1016/j.materresbull.2019.04.024Search in Google Scholar

[4] N. Izua, K. Shimada, T. Akamatsu, T. Itoh, W. Shin, K. Shiraishi, T. Usui: Ceram. Int. 40 (2014) 8775 –8781. DOI:10.1016/j.ceramint.2014.01.09910.1016/j.ceramint.2014.01.099Search in Google Scholar

[5] M. Rajalakshmi, S. Sohila, S. Ramya, R. Divakar, C. Ghosh, S. Kalavathi: Opt. Mater. 34 (2012) 1241 –1245. DOI:10.1016/j.optmat.2012.01.02110.1016/j.optmat.2012.01.021Search in Google Scholar

[6] J. Xie, Y. Cao, D. Jia, Y. Li, Y. Wang: Ceram. Int. 42 (2016) 90– 96. DOI:10.1016/j.ceramint.2015.07.13510.1016/j.ceramint.2015.07.135Search in Google Scholar

[7] J. Guo, C. Peng: Ceram. Int. 41 (2015) 2180 –2186. DOI:10.1016/j.ceramint.2014.10.01710.1016/j.ceramint.2014.10.017Search in Google Scholar

[°] O. Lupan, V.V. Ursaki, G. Chai, L. Chow, G.A. Emelchenko, I.M. Tiginyanu, A.N. Gruzintsev, A.N. Redkin: Sens. Actuators B 144 (2010) 56–66. DOI:10.1016/j.snb.2009.10.03810.1016/j.snb.2009.10.038Search in Google Scholar

[9] K-M. Kim, H-R. Kim, K-I. Choi, H-J. Kim, J-H. Lee: Sens. Actuators B 155 (2011) 745–751. DOI:10.1016/j.snb.2011.01.04010.1016/j.snb.2011.01.040Search in Google Scholar

[10] X. Jiang, F.L. Wong, M.K. Fung, S.T. Lee: Appl. Phys. Lett. 83 1875 (2003). DOI:10.1063/1.160580510.1063/1.1605805Search in Google Scholar

[11] J.F. de Lima, R.F. Martins, O.A. Serra: Opt. Mater. 35 (2012) 56– 60. DOI:10.1016/j.optmat.2012.06.01610.1016/j.optmat.2012.06.016Search in Google Scholar

[12] V. Bhosle, J.T. Prater, F. Yang, D. Burk, S.R. Forrest, J. Narayan: J. Appl. Phys. 102, 023501 (2007). DOI:10.1063/1.275041010.1063/1.2750410Search in Google Scholar

[13] V.V. Gawade, N.L. Gavade, H.M. Shinde, S.B. Babar, A.N. Kadam, K.M. Garadkar: J Mater Sci: Mater Electron 28 (2017) 14033 –14039. DOI:10.1007/τ10854-017-7254-210.1007/τ10854-017-7254-2Search in Google Scholar

[14] K. Ali, S. Dwivedi, A. Azam, Q. Saquib, M.S. Al-said M, A.A. Alkhedhairy, J. Musarrat: J. Colloid Interface Sci. 472 (2016) 145–156. PMid:27031596; DOI:10.1016/j.jcis.2016.03.02110.1016/j.jcis.2016.03.021Search in Google Scholar

[15] S. Gunalan, R. Sivaraj, V. Rajendran: Mater. Res. Bull. 46 (2011) 2560 –2566. DOI:10.1016/j.materresbull.2011.07.04610.1016/j.materresbull.2011.07.046Search in Google Scholar

[16] F.T. Thema, E. Manikandan, M.S. Dhlamini, M. Maaza: Mater. Lett. 161 (2015) 124. DOI:10.1016/j.matlet.2015.08.05210.1016/j.matlet.2015.08.052Search in Google Scholar

[17] J. Suresh, G. Pradheesh, V. Alexramani, M. Sundrarajan, S.I. Hong: Adv. Nat. Sci: Nanosci. Nanotechnol. 9 (2018) 015008. DOI:10.1088/2043-6254/aaa6f110.1088/2043-6254/aaa6f1Search in Google Scholar

[18] D. Suresh, P.C. Nethravathi, Udayabhanu, H. Rajanaika, Z. Nagabhushana, S.C. Sharma: Mater. Sci. Semicond. Process. 31(2015) 446–454. DOI:10.1016/j.mssp.2014.12.02310.1016/j.mssp.2014.12.023Search in Google Scholar

[19] M. Anbuvannan, M. Ramesh, G. Viruthagiri, N. Shanmugam, N. Kannadasan: Mater. Sci. Semicond. Process. 39 (2015) 621 – 628. DOI:10.1016/j.mssp.2015.06.00510.1016/j.mssp.2015.06.005Search in Google Scholar

[20] K. Lingaraju, H. Raja Naika, K. Manjunath, R.B. Basavaraj, H. Nagabhushana, G. Nagaraju, D. Suresh: Appl. Nanosci. 6 (2016) 703–710. DOI:10.1007/τ13204-015-0487-610.1007/τ13204-015-0487-6Search in Google Scholar

[21] S. Gunalan, R. Sivaraj, V. Rajendran: Prog. Nat. Sci. Mater. Int. 22 (2012) 693–700. DOI:10.1016/j.pnsc.2012.11.01510.1016/j.pnsc.2012.11.015Search in Google Scholar

[22] A.S. Borges, B.R. Minozzo, H. Santos, J.S. Ardisson, R.P. Rodrigues, W. Romão, W.de S. Borges, R.de C.R. Gonçalves, F.L. Beltrame, R.R. Kitagawa: Industrial Crops & Products 146 (2020) 112207. DOI:10.1016/j.indcrop.2020.11220710.1016/j.indcrop.2020.112207Search in Google Scholar

[23] N. Pandiyan, B. Murugesan, M. Arumugam, J. Sonamuthu, S. Samayanan, S. Mahalingam: J. Photochem. Photobiol., B: Biology 198 (2019) 111559. PMid:31344503; DOI:10.1016/j.jphotobiol.2019.11155910.1016/j.jphotobiol.2019.111559Search in Google Scholar

[24] K. Rekha, M. Nirmala, M.G. Nair, A. Anukaliani: Physica B 405 (2010) 3180–3185. DOI:10.1016/j.physb.2010.04.04210.1016/j.physb.2010.04.042Search in Google Scholar

[25] R. Kripal, A.K. Gupta, R.K. Srivastava, S.K. Mishra: Spectrochim. Acta A 79 (2011) 1605 –1612. PMid:21507710; DOI:10.1016/j.saa.2011.05.01910.1016/j.saa.2011.05.019Search in Google Scholar

[26] M.G. Nair, M. Nirmala, K. Rekha, A. Anukaliani: Mater. Lett.65 (2011) 1797–1800. DOI:10.1016/j.matlet.2011.03.07910.1016/j.matlet.2011.03.079Search in Google Scholar

[27] S. Singhal, J. Kaur, T. Namgyal, R. Sharma: Physica B 407 (2012) 1223 –1226. DOI:10.1016/j.physb.2012.01.10310.1016/j.physb.2012.01.103Search in Google Scholar

[28] G. Madhumitha, J. Fowsiya, N. Gupta, A. Kumar, M. Singh: J. Phys. Chem. Solids 127 (2019) 43 –51. DOI:10.1016/j.jpcs.2018.12.00510.1016/j.jpcs.2018.12.005Search in Google Scholar

[29] B.B. Cullity, S.R. Stock: Elements of X-ray diffraction, 3rd Edn. Prentice Hall, New Jersey (2001).Search in Google Scholar

[30] C. Suryanarayana, M.G. Norton: X-Ray Diffraction: A Practical Approach, Plenum Press, New York (1998). DOI:10.1007/978-1-4899-0148-410.1007/978-1-4899-0148-4Search in Google Scholar

[31] A. Khorsandzak, W.H. Abd. Majid, M.E. Abrishami, R. Yousefi: Solid State Sci.13 (2011) 251 –256. DOI:10.1016/j.solidstatesciences.2010.11.02410.1016/j.solidstatesciences.2010.11.024Search in Google Scholar

[32] N. Matinise, X.G. Fuku, K. Kaviyarasu, N. Mayedwa, M. Maaza: Appl. Surf. Sci. 406 (2017) 339 –347. DOI:10.1016/j.apsusc.2017.01.21910.1016/j.apsusc.2017.01.219Search in Google Scholar

[33] M.R. Parra, F.Z. Haque: J. Mater. Res.Technol. 3(4) (2014) 363– 369. DOI:10.1016/j.jmrt.2014.07.00110.1016/j.jmrt.2014.07.001Search in Google Scholar

[34] T. Bhuyan, K. Mishra, M. Khanuja, R. Prasad, A. Varma: Mater. Sci. Semicond. Process. 32 (2015) 55–61. DOI:10.1016/j.mssp.2014.12.05310.1016/j.mssp.2014.12.053Search in Google Scholar

[35] M.S. Geetha, H. Nagabhushana, H.N. Shivananjaiah: Journal of Science: Advanced Materials and Devices (2016) 301–310. DOI:10.1016/j.jsamd.2016.06.01510.1016/j.jsamd.2016.06.015Search in Google Scholar

[36] Y.W. Chen, Y.C. Liu, S.X. Lu, C.S. Xu, C.L. Shao, C. Wang, J.Y. Zhang, Y.M. Lu, D.Z. Shen, X.W. Fan: J. Chem. Phys. 123 (2005) 13470. PMid:16229605; DOI:10.1063/1.200973110.1063/1.2009731Search in Google Scholar

[37] K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade: J. Appl. Phys. (79) 7983 (1996). DOI:10.1063/1.36234910.1063/1.362349Search in Google Scholar

[38] S.K. Sharma, P.K. Pujari, K. Sudarshan, D. Dutta, M. Mahapatra, S.V. Godbole, O.D. Jayakumar, A.K. Tyagi: Solid State Communications 149 (2009) 550 –554. DOI:10.1016/j.ssc.2009.01.00510.1016/j.ssc.2009.01.005Search in Google Scholar

[39] I.S. Saputra, Y. Yulizar: IOP Conf. Ser.: Mater. Sci. Eng. 188 (2017) 012004. DOI:10.1088/1757-899X/188/1/01200410.1088/1757-899X/188/1/012004Search in Google Scholar

[40] R. Yuvakkumar, J. Suresh, B. Saravanakumar, A.J. Nathanael, S.I. Hong, V. Rajendran: Spectrochim. Acta A 137 (2015) 250 – 258. PMid:25228035; DOI:10.1016/j.saa.2014.08.02210.1016/j.saa.2014.08.022Search in Google Scholar

[41] N.A. Samat, R.M. Nor: Ceram. Int. 39 (2013) 545 –548. DOI:10.1016/j.ceramint.2012.10.13210.1016/j.ceramint.2012.10.132Search in Google Scholar

[42] A. Happy, M. Soumya, S.V. Kumar, S. Rajeshkumar, R.D. Sheba, T. Lakshmi, V. Deepak Nallaswamy: Biochem. Biophys. Reports 17 (2019) 208–211. PMid:30723810; DOI:10.1016/j.bbrep.2019.01.00210.1016/j.bbrep.2019.01.002Search in Google Scholar

[43] M. Sundrarajan, S. Ambika, K. Bharathi: Adv. Powder Technol. 26 (2015) 1294–1299. DOI:10.1016/j.apt.2015.07.00110.1016/j.apt.2015.07.001Search in Google Scholar

[44] S.A. Gaddam, V.S. Kotakadi, D.V.R.S. Gopal, Y.S. Rao, A.V. Reddy: J. Nanostructure Chem. 4 (2014) 1–9. DOI:10.1007/τ40097-014-0082-510.1007/τ40097-014-0082-5Search in Google Scholar

[45] S. Vijayakumar, S. Mahadevan, P. Arulmozhi, S. Sriram, P.K. Praseetha: Mater. Sci. Semicond. Process. 82 (2018) 39–45. DOI:10.1016/j.mssp.2018.03.01710.1016/j.mssp.2018.03.017Search in Google Scholar

[46] T. Ohira, O. Yamamoto, Y. Iida, Zenbe-e Nakagawa: J. Mater. Sci: Mater. Med. (2008) 19 1407 –1412. PMid:17914627; DOI:10.1007/τ10856-007-3246-°10.1007/τ10856-007-3246-°Search in Google Scholar

Received: 2020-04-24
Accepted: 2020-08-28
Published Online: 2021-12-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany