Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 23, 2013

Microstructures of Erbium Modified Aluminum-Copper Alloys

Mikrostrukturen von Erbium-modifizierten Aluminium-Kupfer-Legierungen
E. Berghof-Hasselbächer , P.J. Masset , L. Zhang , L. Liu , Z. Jin , G. Schmidt , M. Galetz and M. Schütze
From the journal Practical Metallography

Abstract

Alloying with rare earth metals improves to the mechanical properties and corrosion resistance of aluminium base alloys at high temperatures. The rare earth metal erbium may be used for grain refinement. Within a project of computer-aided alloy development based on the CALPHAD (CALculation of PHAse Diagrams) method various alloys were melted on the Al-rich side of the ternary system Al-Cu-Er under argon atmosphere and their microstructures were characterized in the as-cast state or after long-term isothermal annealing (400°C/960 h) by means of different investigation techniques. As a result, the phases fcc(Al), τ1-Al8Cu4Er, θ-CuAl2, η-CuAl, and Al3Er were identified, their compositions and fractions were quantified, and their hardnesses were determined. The experimental obtained microstructures agree very well with the calculated solidification behaviors of the cast alloys. The knowledge gained from this work about the phase compositions and microstructures can also be utilized for the fine optimization of the phase diagram.

Kurzfassung

Durch das Zulegieren von Seltenerdmetallen können die mechanischen Eigenschaften und die Korrosionsbeständigkeit von Aluminium-Basislegierungen bei hohen Temperaturen verbessert werden. Das Seltenerd-Element Erbium kann zur Kornfeinung genutzt werden. Im Rahmen eines Projektes der computergestützten Legierungsentwicklung auf Basis der CALPHAD- (CALculation of PHAse Diagrams) Methode wurden verschiedene Legierungen auf der Al-reichen Seite des ternären Systems Al-Cu-Er unter Argon erschmolzen und ihre Mikrostrukturen im Gusszustand bzw. nach Wärmebehandlung (400°C/960 h) mit verschiedenen Untersuchungsmethoden charakterisiert. Dabei wurden die Phasen kfz(Al), τ1-Al8Cu4Er, θ-CuAl2, η-CuAl und Al3Er identifiziert, ihre Zusammensetzungen und Anteile quantifiziert, sowie ihre Härten bestimmt. Die experimentell gefundenen Gefüge stimmen sehr gut mit dem berechneten Erstarrungsverhalten der Gusslegierungen überein. Die in dieser Arbeit gewonnenen Informationen über die Phasenzusammensetzungen und -mikrostrukturen können für die Feinoptimierung des Phasendiagramms weiter verwendet werden.


Translation: J. Fritsche

Ellen Berghof-Hasselbächer born 1960, 1982–1995 apprenticeship and employment as a metallographer at Metallgesellschaft AG, Frankfurt am Main 1996–1998 self-employed at Metalloplan GmbH, Weilrod 1998–2012 Karl-Winnacker-Institute of Dechema e.V., Franfurt am Main Since 2012 DECHEMA-Forschungsinstitut responsible for metallographic investigations of research projects and failure analysis of industrial plants in Dpt. High Temperature Materials

Patrick J. Masset born on January 24th, 1974 in Saint-Pierre d'Albigny (France) obtained his Ph.D. thesis at the national polytechnic institute of Grenoble in 2002 and his habilitation from the University Pierre and Marie Curie in Paris in 2010. He was head of the research group “Multiphase systems” at the TU Bergakademie Freiberg. Since January 2012, he is head of the department “New Materials” at Fraunhofer UMSICHT-ATZ in Sulzbach-Rosenberg.


References / Literatur

[1] Kammer, C: Aluminium-Taschenbuch, Band 1: Grundlagen und Werkstoffe, 16. Auflage, Aluminium-Verlag, Düsseldorf, Deutschland, 2002, S. 166ffSearch in Google Scholar

[2] Xiao, D.H.; Wang, J.N.; Ding, D.Y.; Yang, H.L.: J. Alloys Compd.352 (2003), 848810.1016/S0925-8388(02)01162-3Search in Google Scholar

[3] Wang, W.T.; Zhang, X.M.; Gao, Z.G.; Jia, Y.Z.; Ye, L.Y; Zheng, D.W.; Liu, L: J. Alloys Compd.491 (2010), 36637110.1016/j.jallcom.2009.10.185Search in Google Scholar

[4] Wang, J.H.; Yi, D.Q.; Lu; B.: JournaloftheChinese Rare Earth Society, 20 (2), (2002), 150153Search in Google Scholar

[5] Li, H.-Z.; et al: Trans. Nonferrous Met. Soc. China17 (2007), 1194119810.1016/S1003-6326(07)60248-9Search in Google Scholar

[6] Knipling, K.E.; Dunand, D.C.; Seidman, D.N.: Z. Metall.97 (2006), 24626510.3139/146.101249Search in Google Scholar

[7] Bo, H.; Jin, S.; Zhang, LG.; Chen, X.M.; Chen, H.M.; Liu, L.B.; Zheng, F.; Jin, Z.P.: J. Alloys Compd.484 (2009), 28629510.1016/j.jallcom.2009.04.083Search in Google Scholar

[8] Nie, Z.R.; Fu, J.B.; Zou, J.X.; Jin, T.N.; Yang, J.J.; Xu, G.F.; Ruan, H.Q.; Zuo, T.Y: Mater. Forum28 (2004), 197201Search in Google Scholar

[9] Kuz'ma, Y.B.; Pan'kiv, T.V.: lzv. Akad. Nauk SSSR, Metally3 (1989), 218219Search in Google Scholar

[10] Riani, P.; Arrighi, L; Marazza, R.; Mazzone, D.; Zanicchi, G.; Ferro, R.J.: Phase Equilib.25 (2004), 225210.1361/10549710417669Search in Google Scholar

[11] Zhang, L.G.; Liu, L.B.; Huang, G.X.; Qi, H.Y; Jia, B.R.; Jin, Z.P.: CALPHAD32 (2008), 52753410.1016/j.calphad.2008.05.002Search in Google Scholar

[12] Zhang, L.; Masset, P.J.; Cao, F.; Meng, F.; Liu, L.; Jin, Z.: J. Alloys. Comp., 509 (2011), 9, 3822383110.1016/j.jallcom.2010.12.029Search in Google Scholar

[13] Wang, S.C.; Starink, M.J.: International Materials Reviews50 (2005), 4, 19321510.1179/174328005X14357Search in Google Scholar

Received: 2011-12-1
Accepted: 2012-4-30
Published Online: 2013-05-23
Published in Print: 2012-07-01

© 2012, Carl Hanser Verlag, München

Downloaded on 2.12.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.3139/147.110177/html
Scroll Up Arrow