Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 27, 2015

Novel Methods for the Site Specific Preparation of Micromechanical Structures

Presented at the Metallography Conference 2014 in Leoben, Austria

Neuartige Verfahren zur ortspezifischen Präparation mikromechanischer Strukturen
Vorgetragen auf der Metallographietagung 2014 in Leoben, Österreich
S. Wurster, R. Treml, R. Fritz, M. W. Kapp, E. Langs, M. Alfreider, C. Ruhs, P.J. Imrich, G. Felber and D. Kiener
From the journal Practical Metallography

Abstract

The ongoing trend towards miniaturization in various fields of material science requires the capability to investigate the local mechanical properties of the concerned structures by miniaturized mechanical experiments. Besides nanoindentation, miniaturized experiments such as micro-compression, micro-tension, micro-bending, or micro-fracture tests were employed frequently in recent times. A major challenge for these experiments is the fabrication of specimens. Therefore, we present different approaches to prepare miniaturized testing objects in a site specific way, using strategies that employ chemical etching, broad beam ion milling, and focussed ion beam milling. Depending on the required sample size and precision, the typical strategies for sample fabrication will be outlined, and the benefits and drawbacks of the techniques are discussed. Finally, applications of specimens produced by the different procedures are presented.

Kurzfassung

Der anhaltende Trend hin zur Miniaturisierung in verschiedenen Bereichen der Materialforschung erfordert die Möglichkeit der Untersuchung lokaler mechanischer Eigenschaften betreffender Strukturen mittels miniaturisierter mechanischer Versuche. Neben der Nanoindentation werden in jüngster Zeit häufig miniaturisierte Experimente wie beispielsweise Mikrodruck-, Mikrozug-, Mikrobiege- oder Mikrobruchversuche durchgeführt. Die Herstellung der Proben stellt hier eine große Herausforderung dar. Wir stellen daher verschiedene Ansätze zur ortsspezifischen Präparation miniaturisierter Prüfobjekte vor, bei denen Strategien wie chemisches Ätzen, Ionenpolieren mit breitem Strahlenbündel (Broad Beam Ion Milling) und Ionenätzen mit fokussierten Ionenstrahlen (Focused Ion Beam Milling) zum Einsatz kommen. Entsprechend der erforderlichen Probengröße und Präzision werden die typischen Strategien zur Probenherstellung erläutert und die Vor- und Nachteile dieser Techniken behandelt. Im letzten Teil werden Anwendungsbereiche für die mit den verschiedenen Verfahren hergestellten Proben vorgestellt.


Übersetzung: E. Engert


References / Literatur

[1] Petch, N. J.: The Cleavage Strength of Polycrystals. J. Iron Steel, 174, 1953, p. 25.Search in Google Scholar

[2] Hall, E. O.: The Deformation and Ageing of Mild Steel. Proc. Phys. Soc. Lond. B, 64, 1951, p. 747. 10.1088/0370-1301/64/9/303Search in Google Scholar

[3] Arzt, E.: Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater., 46, 1998, p. 5611. 10.1016/S1359-6454(98)00231-6Search in Google Scholar

[4] Kiener, D.; Rester, M.; Scheriau, S.; Yang, B.; Pippan, R.; Dehm, G.: Influence of External and Internal Length Scale of the Flow Stress of Copper. Int. J. Mat. Res., 98, 2007, p. 1047. 10.3139/146.101578Search in Google Scholar

[5] Uchic, M. D.; Shade, P. A.; Dimiduk, D.: Plasticity of Micrometer-Scale Single Crystals in Compression. Ann. Rev. Mater. Res., 39, 2009, p. 361. 10.1146/annurev-matsci-082908-145422Search in Google Scholar

[6] Uchic, M. D.; Dimiduk, D. M.; Florando, J. N.; Nix, W. D.: Sample Dimensions Influence Strength and Crystal Plasticity. Science, 305, 2004, p. 986. 10.1126/science.1098993Search in Google Scholar

[7] Dehm, G.: Miniaturized single-crystalline fcc metals deformed in tension: New insights in size-dependent plasticity. Prog. Mater. Sci., 54, 2009, p. 664. 10.1016/j.pmatsci.2009.03.005Search in Google Scholar

[8] Kraft, O.; Gruber, P. A.; Mönig, R.; Weygand, D.: Plasticity in Confined Dimensions. Ann. Rev. Mater. Res., 40, 2010, p. 293. 10.1146/annurev-matsci-082908-145409Search in Google Scholar

[9] Orowan, E.Discussion on Internal Stresses. Symposium on Internal Stresses in Metals and Alloys. London: The Institute of Metals, 1948. p.451.Search in Google Scholar

[10] Brenner, S. S.: Growth and Properties of Whiskers. Science, 128, 1958, p. 569. 10.1126/science.128.3324.569Search in Google Scholar

[11] Richter, G.; Hillerich, K.; Gianola, D. S.; Mönig, R.; Kraft, O.; Volkert, C. A.: Ultrahigh Strength Single Crystalline Nanowhiskers Grown by Physical Vapor Deposition. Nano Lett., 9, 2009, p. 3048. 10.1021/nl9015107Search in Google Scholar

[12] Dou, R.; Derby, B.: The strength of gold nanowire forests. Scripta Mater., 59, 2008, p. 151. 10.1016/j.scriptamat.2008.02.046Search in Google Scholar

[13] Burek, M. J.; Greer, J. R.: Fabrication and Microstructure Control of Nanoscale Mechanical Testing Specimens via Electron Beam Lithography and Electroplating. Nano Lett., 10, 2010, p. 69. 10.1021/nl902872wSearch in Google Scholar

[14] Smolka, M.; Motz, C.; Detzel, T.; Robl, W.; Griesser, T.; Wimmer, A.; Dehm, G.: Novel temperature dependent tensile test of freestanding copper thin film structures. Rev. Sci. Instrum., 83, 2012, p. 064702. 10.1063/1.4725529Search in Google Scholar

[15] Volkert, C. A.; Minor, A. M.: Focused ion beam microscopy and micromachining. MRS Bull., 32, 2007, p. 389. 10.1557/mrs2007.62Search in Google Scholar

[16] Giannuzzi, L. A.; Stevie, F. A.: A review of focused ion beam milling techniques for TEM specimen preparation. Micron, 30, 1999, p. 197. 10.1016/S0968-4328(99)00005-0Search in Google Scholar

[17] Moser, G.; Felber, H.; Rashkova, B.; Imrich, P. J.; Kirchlechner, C.; Grosinger, W.; Motz, C.; Dehm, G.; Kiener, D.: Sample Preparation by Metallography and Focused Ion Beam for Nanomechanical Testing. Pract. Metallogr., 49, 2012, p. 343. 10.3139/147.110171Search in Google Scholar

[18] Ziegler, J. F.; Biersack, J. P.; Littmark, U.The Stopping Range of Ions in Matter. New York: Pergamon Press, 1985.10.1007/978-1-4615-8103-1_3Search in Google Scholar

[19] Kiener, D.; Grosinger, W.; Dehm, G.; Pippan, R.: A further step towards an understanding of size-dependent crystal plasticity: In-situ tension experiments of miniaturized single crystal copper samples. Acta Mater., 56, 2008, p. 580. 10.1016/j.actamat.2007.10.015Search in Google Scholar

[20] Imrich, P. J.; Kirchlechner, C.; Motz, C.; Dehm, G.: Differences in deformation behavior of bicrystalline Cu micropillars containing a twin boundary or a large-angle grain boundary. Acta Mater., 73, 2014, p. 240. 10.1016/j.actamat.2014.04.022Search in Google Scholar

[21] Kiener, D.; Motz, C.; Dehm, G.; Pippan, R.: Overview on established and novel FIB based miniaturized mechanical testing using in-situ SEM. Int. J. Mat. Res., 100, 2009, p. 1074. 10.3139/146.110149Search in Google Scholar

[22] Gianola, D. S.; Sedlmayr, A.; Monig, R.; Volkert, C. A.; Major, R. C.; Cyrankowski, E.; Asif, S. A. S.; Warren, O. L.; Kraft, O.: In situ nanomechanical testing in focused ion beam and scanning electron microscopes. Rev. Sci. Instrum., 82, 2011, p. 063901. 10.1063/1.3595423Search in Google Scholar

[23] Wurster, S.; Motz, C.; Jenko, M.; Pippan, R.: Micrometer-Sized Specimen Preparation Based on Ion Slicing Technique. Adv. Eng. Mater., 12, 2010, p. 61. 10.1002/adem.200900263Search in Google Scholar

[24] Matoy, K.; Schönherr, H.; Detzel, T.; Schöberl, T.; Pippan, R.; Motz, C.; Dehm, G.: A comparative micro-cantilever study of the mechanical behavior of silicon based passivation films. Thin Solid Films, 518, 2009, p. 247. 10.1016/j.tsf.2009.07.143Search in Google Scholar

[25] Schöngrundner, R.; Treml, R.; Antretter, T.; Kozic, D.; Ecker, W.; Kiener, D.; Brunner, R.: Critical assessment of the determination of residual stress profiles in thin films by means of the ion beam layer removal method. Thin Solid Films, 564, 2014, p. 321. 10.1016/j.tsf.2014.06.003Search in Google Scholar

[26] Shade, P. A.; Kim, S.-L.; Wheeler, R.; Uchic, M. D.: Stencil mask methodology for the parallelized production of microscale mechanical test samples. Rev. Sci. Instrum., 83, 2012, p. 053903. 10.1063/1.4720944Search in Google Scholar

[27] Kiener, D.; Motz, C.; Schöberl, T.; Jenko, M.; Dehm, G.: Determination of Mechanical Properties of Copper at the Micron Scale. Adv. Eng. Mater., 8, 2006, p. 1119. 10.1002/adem.200600129Search in Google Scholar

[28] Kiener, D.; Motz, C.; Dehm, G.: Micro-compression testing: A critical discussion of experimental constraints. Mater. Sci. Eng. A, 505, 2009, p. 79. 10.1016/j.msea.2009.01.005Search in Google Scholar

[29] Kiener, D.; Motz, C.; Grosinger, W.; Weygand, D.; Pippan, R.: Cyclic response of copper single crystal micro-beams. Scripta Mater., 63, 2010, p. 500. 10.1016/j.scriptamat.2010.05.014Search in Google Scholar

[30] Kiener, D.; Minor, A. M.: Source Truncation and Exhaustion: Insights from Quantitative in situ TEM Tensile Testing. Nano Lett., 11, 2011, p. 3816. 10.1021/nl201890sSearch in Google Scholar

[31] Greer, J. R.; De Hosson, J. T. M.: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci., 56, 2011, p. 654. 10.1016/j.pmatsci.2011.01.005Search in Google Scholar

[32] Niederberger, C.; Mook, W. M.; Maeder, X.; Michler, J.: In situ electron backscatter diffraction (EBSD) during the compression of micropillars. Mater. Sci. Eng. A, 527, 2010, p. 4306. 10.1016/j.msea.2010.03.055Search in Google Scholar

[33] Xie, K. Y.; Shrestha, S.; Cao, Y.; Felfer, P. J.; Wang, Y.; Liao, X.; Cairney, J. M.; Ringer, S. P.: The effect of pre-existing defects on the strength and deformation behavior of α-Fe nanopillars. Acta Mater., 61, 2013, p. 439. 10.1016/j.actamat.2012.09.022Search in Google Scholar

[34] Massl, S.; Keckes, J.; Pippan, R.: A direct method of determining complex depth profiles of residual stresses in thin films on a nanoscale. Acta Mater., 55, 2007, p. 4835. 10.1016/j.actamat.2007.05.002Search in Google Scholar

Published Online: 2015-03-27
Published in Print: 2015-03-16

© 2015, Carl Hanser Verlag, München