Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 30, 2018

Investigations on the Microstructure-Property Relationship of NCM-Based Electrodes for Lithium-Ion Batteries

Untersuchungen zur Mikrostruktur-Eigenschafts-Beziehung NCM-basierter Elektroden für Lithium-Ionen-Batterien
  • D. Schmidt , M. Kleinbach , M. Kamlah and V. Knoblauch
From the journal Practical Metallography

Abstract

The microstructure of a multi-material-electrode and in particular its porosity co-determines, to a significant extent, the energy and power density of a lithium-ion cell. Moderate and high degrees of densification with several intermediate stages were applied reaching porosities of up to 18 % in order to increase the theoretical energy density of NCM-based cathodes. By applying microscopic and material analysis methods, the microstructure development during the densification could be described and a direct relationship to the electrochemical performance of the electrodes could be demonstrated. Major microstructural changes in connection with a significant drop in performance at current rates ≥ 2C arise from applying densification with porosities of < 25 %. Then again, compactions of the NCM cathodes generating 20 – 22 % porosity offer the highest energy densities at moderate loads, i. e. current rates ≤ 1C.

Kurzfassung

Die Mikrostruktur einer Multi-Material-Elektrode, hierbei insbesondere deren Porosität, bestimmt die Energie- und Leistungsdichte einer Lithium-Ionen-Zelle entscheidend mit. Zur Steigerung der theoretischen Energiedichte NCM-basierter Kathoden wurden moderate und hohe Verdichtungsraten mit mehreren Zwischenstufen bis zu einer Porosität von 18 % generiert. Mit Hilfe mikroskopischer und materialanalytischer Verfahren konnte die Mikrostrukturentwicklung beim Verdichten beschrieben und ein direkter Zusammenhang mit der elektrochemischen Performance der Elektroden dargestellt werden. Maßgebliche mikrostrukturelle Veränderungen ergeben sich bei Verdichtungsgraden < 25 % Porosität, verbunden mit einem signifikanten Performancerückgang bei Stromraten ≥ 2C. Dem gegenüber bieten Kompaktierungen der NCM-Kathoden von 20 – 22 % Porosität die höchsten Energiedichten bei moderaten Belastungen, sprich Stromraten ≤ 1C.


Translation: E. Engert


References / Literatur

[1] Linden, D.; Reddy, T.: “Handbook of Batteries3rd Edition, McGraw-Hill, New York, 2002, ISBN 978–0071359788Search in Google Scholar

[2] Korthauer, R.: “Handbuch Lithium-Ionen-BatterienSpringer Vieweg, 2013, ISBN 978-3-642-30652-5 10.1007/978-3-642-30653-2Search in Google Scholar

[3] Zheng, H.; Liu, G.; Song, X.; Ridgway, P.; Xun, S.; Battaglia, V.: “Cathode Performance as a Function of Inactive Material and Void FractionsJournal of The Electrochemical Society, 157 (10) A1060A1066 (2010) 10.1149/1.3459878Search in Google Scholar

[4] Chen, Y.-H.; Wang, C.-W.; Zhang, X.; Sastry, A. M.: “Porous cathode optimization for lithium cells: ionic and electronic conductivity, capacity, and selection of materialsJournal of Power Sources, 195 (2010) 2851286210.1016/j.jpowsour.2009.11.044Search in Google Scholar

[5] Zheng, H.; Tan, L.; Liu, G.; Song, X.; Battaglia, V. S.: “Calendering effects on the physical and electrochemical properties of Li [Ni1/3Mn1/3Co1/3]O2 cathodesJournal of Power Sources, 208 (2012) 525710.1016/j.jpowsour.2012.02.001Search in Google Scholar

[6] Oljaca, M.; Blizanac, B.; Du Pasquier, A.; Sun, Y.; Bontchev, R.; Suszko, A.; Wall, R.; Koehlert, K.: “Novel Li(Ni1/3Co1/3Mn1/3)O2 cathode morphologies for high power Li-ion batteriesJournal of Power Sources, 248 (2014) 72973810.1016/j.jpowsour.2013.09.102Search in Google Scholar

[7] Indrikova, M.; Grunwald, S.; Golks, F.; Netz, A.; Westphal, B.; Kwade, A.: “The Morphology of Battery Electrodes with the Focus of the Conductive Additives PathsJournal of The Electrochemical Society, 162 (10) A2021A2025 (2015) 10.1149/2.0441510jesSearch in Google Scholar

[8] Kitada, K.; Murayama, H.; Fukuda, K.; Arai, H.; Uchimoto, Y.; Ogumi, Z.; Matsubara, E.: “Factors determining the packing-limitation of active materials in the composite electrode of lithium-ion batteriesJournal of Power Sources, 301 (2016) 111710.1016/j.jpowsour.2015.09.105Search in Google Scholar

[9] Smekens, J.; Gopalakrishnan, R.; Van den Steen, N.; Omar, N.; Hegazy, O.; Hubin, A.; Van Mierlo, J.: “Influence of Electrode Density on the performance of Li-ion Batteries: Experimental and Simulation ResultsEnergies, 9 (2016) 104 10.3390/en9020104Search in Google Scholar

[10] Lim, C.; Yan, B.; Kang, H.; Song, Z.; Chao Lee, W.; De Andrade, V.; De Carlo, F.; Yin, L.; Kim, Y.; Zhu, L.: “Analysis of Geometric and Electrochemical Characteristics of Lithium Cobalt Oxide Electrode with Different Packing DensitiesJournal of Power Sources, 328, (2016) 465510.1016/j.jpowsour.2016.07.119Search in Google Scholar

[11] Kang, H.; Lim, C.; Li, T.; Fu, Y.; Yan, B.; Houston, N.; De Andrade, V.; De Carlo, F.; Zhu, L.: “Geometric and Electrochemical Characteristics of LiNi1/3Mn1/3Co1/3O2 Electrode with Different Calendering Conditions”, Electrochimica Acta, 232 (2017) 43143810.1016/j.electacta.2017.02.151Search in Google Scholar

[12] Meyer, C.; Bockholt, H.; Haselrieder, W.; Kwade, A.: “Characterization of the calendering process for compaction of electrodes for lithium-ion batteriesJournal of Materials Processing Tech., 249 (2017) 17217810.1016/j.jmatprotec.2017.05.031Search in Google Scholar

[13] Waldmann, T.; Gorse, S.; Samtleben, T.; Schneider, G.; Knoblauch, V.; Wohlfahrt-Mehrens, M.: “A Mechanical Ageing Mechanism in Lithium-Ion Batteries”, Journal of the Electrochemical Society 16110 (2014) A1742 – A1747 10.1149/2.1001410jesSearch in Google Scholar

[14] Gorse, S.; Kugler, B.; Samtleben, T.; Waldmann, T.; Wohlfahrt-Mehrens, M.; Schneider, G.; Knoblauch, V.: “An Explanation of the Ageing Mechanism of Li-Ion Batteries by Metallographic and Material AnalysisPractical Metallography, 51 (2014) 82984810.3139/147.110325Search in Google Scholar

[15] Hafner, C.; Bernthaler, T.; Knoblauch, V.; Schneider, G.: “The Materialographic Preparation and Microstructure Characterization of Lithium Ion AccumulatorsPractical Metallography, 49 (2012) 758510.3139/147.110150Search in Google Scholar

[16] Bockholt, H.; Indrikova, M.; Netz, A.; Golks, F.; Kwade, A.: “The interaction of consecutive process steps in the manufacturing of lithium-ion electrodes with regard to structural and electrochemical propertiesJournal of Power Sources, 325 (2016) 14015110.1016/j.jpowsour.2016.05.127Search in Google Scholar

[17] Weisenberger, C.; Guth, G.; Bernthaler, T.; Knoblauch, V.: “New Quality Evaluation Approaches for Lithium Ion Batteries Using the Interference Layer Metallography in Combination with Quantitative Structural AnalysisPractical Metallography, 51 (2014) 53110.3139/147.110260Search in Google Scholar

[18] Froboese, L.; Titscher, P.; Westphal, B.; Haselrieder, W.; Kwade, A.: “Mercury intrusion for ion- and conversion-based battery electrodes – Structure and diffusion coefficient determinationMaterials Characterization133 (2017) 10211110.1016/j.matchar.2017.09.002Search in Google Scholar

[19] Buchberger, I.; Seidlmayer, S.; Pokharel, A.; Piana, M.; Hattendorff, J.; Kudejova, P.; Gilles, R.; Gasteiger, H. A.: “Aging Analysis of Graphite/LiNi1/3Mn1/3Co1/3O2 Cells Using XRD, PGAA, and AC Impedance”; Journal of The Electrochemical Society, 2015, 162 (14), A2737A274610.1149/2.0721514jesSearch in Google Scholar

[20] Westhoff, D.; Kuchler, K.; Feinauer, J.; Petrich, L.; Schmidt, V.: “Analyse, Modellierung und Simulation von tomographischen Bilddaten für die 3D Mikrostruktur von Elektrodenmaterial in Lithium-Ionen-Batterien” Beitrag zur 51. Metallografietagung der DGM (2017) AalenSearch in Google Scholar

[21] Kuchler, K.; Prifling, B.; Schmidt, D.; Markötter, H.; Manke, I.; Knoblauch, V.; Schmidt, V.: “Analysis of the 3D microstructure of experimental cathode films for lithium-ion batteries under increasing compactionJournal of Microscopy, submitted 10.1111/jmi.12749Search in Google Scholar PubMed

[22] Schmidt, D., Kamlah, M.; Knoblauch, V.: “Highly densified NCM-cathodes for high energy Li-ion batteries: Microstructural evolution during densification and its influence on the performance of the electrodesJournal of Energy Storage17 (2018) 21322310.1016/j.est.2018.03.002Search in Google Scholar

[23] André, M.; Joumard, R.; Vidon, R.; Tassel, P.; Perret, P.: “Real-world European driving cycles, for measuring pollutant emissions from high- and low-powered carsAtmospheric Environment40 (2006) 5944595310.1016/j.atmosenv.2005.12.057Search in Google Scholar

[24] Chen, L.-C.; Liu, D.; Liu, T.-J.; Tiu, C.; Yang, C.-R.; Chu, W.-B.; Wan, C.-C.: “Improvement of lithium-ion battery performance using a two-layered cathode by simultaneous slot-die coatingJournal of Energy Storage, 5 (2016) 15616210.1016/j.est.2015.12.008Search in Google Scholar

[25] Dai, Y.; Srinivasan, V.: “On Graded Electrode Porosity as a Design Tool for Improving the Energy Density of BatteriesJournal of The Electrochemical Society, 163 (3) (2016) A406A41610.1149/2.0301603jesSearch in Google Scholar

Received: 2018-03-15
Accepted: 2018-05-09
Published Online: 2018-10-30
Published in Print: 2018-11-15

© 2018, Carl Hanser Verlag, München

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.3139/147.110528/html
Scroll to top button