Abstract
Recent studies show that there are major variations in the mechanical properties of additively manufactured precipitation-hardenable AlSi10Mg samples. These variations are caused by the varying precipitation hardening condition which, in turn, can be attributed to dwell times varying at elevated temperatures. Another influence on the microstructure can be revealed when looking at the different building orientations. AlSi10Mg samples were manufactured with different building orientations in order to investigate this in greater detail. They were subjected to a hardness measurement and microstructural analysis. Different heat treatment options were studied and the additively manufactured AlSi10Mg samples were subsequently subjected to a homogenizing heat treatment. New hardness measurements and microstructural examinations were performed in order to document the successful homogenization process.
Kurzfassung
Neueste Untersuchungen zeigen große Schwankungen in den mechanischen Eigenschafen von additiv hergestellten ausscheidungshärtbaren AlSi10Mg-Proben. Ursache ist der variierende Ausscheidungshärtungszustand, der durch die unterschiedlichen Verweilzeiten bei erhöhten Temperaturen verursacht wird. Einen weiteren Einfluss auf die Mikrostruktur zeigen die unterschiedlichen Aufbaurichtungen. Um dies detaillierter zu untersuchen, wurden AlSi10Mg-Proben in unterschiedlichen Aufbaurichtungen hergestellt und an verschiedenen Positionen einer Härtemessung und Gefügeanalyse unterzogen. Verschiedene Wärmebehandlungsmöglichkeiten wurden untersucht und im Anschluss wurden die additiv hergestellten AlSi10Mg-Proben einer homogenisierenden Wärmebehandlung unterzogen. Erneute Härtemessungen sowie Mikrostrukturuntersuchungen wurden durchgeführt, um den Erfolg der Homogenisierung zu belegen.
References / Literatur
[1] Hitzler, L.; et al.: A Review of Metal Fabricated with Laser- and Powder-Bed Based Additive Manufacturing Techniques: Process, Nomenclature, Materials, Achievable Properties, and its Utilization in the Medical Sector. Advanced Engineering Materials, 2018. 20(5). 10.1002/adem.201700658Search in Google Scholar
[2] Sert, E.; et al.: Entwicklung von topologieoptimierten Adapterelementen für die Fertigung mittels additiver Verfahren: Vereinigung von reinelektrischem Antriebsstrang mit konventionellem Chassis. Materialwissenschaft und Werkstofftechnik, 2018. 49(5): p. 674–682. 10.1002/mawe.201700274Search in Google Scholar
[3] Buchbinder, D.; et al.: Rapid manufacturing of aluminium parts for serial production via Selective Laser Melting (SLM), in 4th International Conference on Rapid Manufacturing. 2009: Loughborough, UK.Search in Google Scholar
[4] Biffi, C. A.; et al.: Microstructure and preliminary fatigue analysis on AlSi10Mg samples manufactured by SLM. Procedia Structural Integrity, 2017. 7: p. 50–57. 10.1016/j.prostr.2017.11.060Search in Google Scholar
[5] Maamoun, A. H.; et al.: Thermal post-processing of AlSi10Mg parts produced by Selective Laser Melting using recycled powder. Additive Manufacturing, 2018. 21: p. 234–247. 10.1016/j.addma.2018.03.014Search in Google Scholar
[6] Hitzler, L.; Charles, A.; Öchsner, A.: The Influence of Post-Heat-Treatments on the Tensile Strength and Surface Hardness of Selective Laser Melted AlSi10Mg. Defect and Diffusion Forum, 2016. 370: p. 171–176.10.4028/www.scientific.net/DDF.370.171Search in Google Scholar
[7] Buchbinder, D.; et al.: Selective laser melting of aluminum die-cast alloy – Correlations between process parameters, solidification conditions, and resulting mechanical properties. Journal of Laser Applications, 2015. 27(S2): p. S29205. 10.2351/1.4906389Search in Google Scholar
[8] Wang, L.; et al.: Effects of T2 Heat Treatment on Microstructure and Properties of the Selective Laser Melted Aluminum Alloy Samples. Materials (Basel), 2018. 11(1). 10.3390/ma11010066Search in Google Scholar PubMed PubMed Central
[9] Hitzler, L.; et al.: Direction and location dependency of selective laser melted AlSi10Mg specimens. Journal of Materials Processing Technology, 2017. 243: p. 48–61. 10.1016/j.jmatprotec.2016.11.029Search in Google Scholar
[10] Buschermöhle, H.: Vereinheitlichung von Proben für Schwingversuche: Abschlussbericht, Vorhaben. 1995: FKM.Search in Google Scholar
[11] Prashanth, K. G.; Eckert, J.: Formation of metastable cellular microstructures in selective laser melted alloys. Journal of Alloys and Compounds, 2017. 707: p. 27–34. 10.1016/j.jallcom.2016.12.209Search in Google Scholar
[12] Hitzler, L.; et al.: Non-destructive evaluation of AlSi10Mg prismatic samples generated by Selective Laser Melting: Influence of manufacturing conditions. Materialwissenschaft und Werkstofftechnik, 2016. 47(5–6): p. 564–581.10.1002/mawe.201600532Search in Google Scholar
© 2019, Carl Hanser Verlag, München