Abstract
In order to improve the compatibility of bisphenol F epoxy resin with the liquid oxygen, the hexabromocyclododecane and the antimony trioxide were added to bisphenol F epoxy resin, and then cured resin was mechanically impacted according to ASTM D-2512-95. The microstructure and the surface element compositions of the specimen before and after the mechanical impact were investigated and analyzed by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. These results indicated that the addition of the antimony trioxide was favorable to help the hexabromocyclododecane to improve the compatibility of the bisphenol F epoxy resin with liquid oxygen. The liquid oxygen compatibility mechanism and the synergistic effect of the hexabromocyclododecane and antimony trioxide on the improvement of compatibility of bisphenol F epoxy resin with liquid oxygen were analyzed in detail.
References
Bai, Y. P., Wang, Z. and Feng, L. Q., “Chemical Recycling of Carbon Fibers Reinforced Epoxy Resin Composites in Oxygen in Supercritical Water”, Mater. Des., 31, 999–1002 (2010) 10.1016/j.matdes.2009.07.057Search in Google Scholar
Bai, Y. P., Wang, Z. and Feng, L. Q., “Interface Properties of Carbon Fiber/Epoxy Resin Composite Improved by Supercritical Water and Oxygen in Supercritical Water”, Mater. Des., 31, 1613–1616 (2010) 10.1016/j.matdes.2009.07.057Search in Google Scholar
Clark, A. F., Hust, J. G., “A Review of the Compatibility of Structural Materials with Oxygen”, AIAA J., 12, 441–454 (1974) 10.2514/3.49267Search in Google Scholar
Colmenares, J.C., Kijenski, J. and Arévalo-García, E.B., “Chemical Trapping Studies to the Determination of Surface Species under Reaction Conditions for the Catalytic Side-chain Oxidative Alkylation of Toluene By Methane”, J. Mol. Catal. A: Chem., 309, 21–27 (2009) 10.1016/j.molcata.2009.04.010Search in Google Scholar
Ema, M., Fujii, S., Hirata-Koizumi, M. and Matsumoto, M., “Two Generation Reproductive Toxicity Study of the Flame Retardant Hexabromocyclododecane in Rats”, Reprod. Toxicol., 25, 335–351 (2008) PMid:18262388 10.1016/j.reprotox.2007.10.006Search in Google Scholar PubMed
Giner, V. T., Baeza, F. J., Ivorra, S., Zornoza, E. and Galaoet, Ó., “Effect of Steel and Carbon Fiber Additions on the Dynamic Properties of Concrete Containing Silica Fume”, Mater. Des., 34, 332–339 (2012) 10.1016/j.matdes.2011.07.068Search in Google Scholar
Guo, H., Huang, Y. D., Liu, L. and Shi, X. H., “Effect of Epoxy Coatings on Carbon Fibers during Manufacture of Carbon Fiber Reinforced Resin Matrix Composites”, Mater. Des., 31, 1186–1190 (2010) 10.1016/j.matdes.2009.09.034Search in Google Scholar
Guo, H., Huang, Y. D., Meng, L. H., Liu, L., Fan, D. P. and Liu, D. X., “Interface Property of Carbon Fibers/Epoxy Resin Composite Improved by Hydrogen Peroxide in Supercritical Water”, Mater. Lett., 63, 1531–1534 (2009) 10.1016/j.matlet.2009.04.007Search in Google Scholar
Kim, R. Y., Lee, C. W., Camping, J. and Bowman, K. B., “Impact Reaction of Composites in Liquid Oxygen”, AIAA 2005-2158; 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference (2005)10.2514/6.2005-2158Search in Google Scholar
Hajjari, E., Divandari, M. and Mirhabibi, A.R., “The Effect of Applied Pressure on Fracture Surface and Tensile Properties of Nickel Coated Continuous Carbon Fiber Reinforced Aluminum Composites Fabricated by Squeeze Casting”, Mater. Des., 31, 2381–2386 (2010) 10.1016/j.matdes.2009.11.067Search in Google Scholar
He, H. W., Wang, J. L., Li, K. X., Wang, J. and Gu, J. Y., “Mixed Resin and Carbon Fibres Surface Treatment for Preparation of Carbon Fibres Composites with Good Interfacial Bonding Strength”, Mater. Des., 31, 4631–4637 (2010) 10.1016/j.matdes.2010.05.031Search in Google Scholar
Kuramoto, K., Ehara, M., Nakatsuji, H., Kitajima, M., Tanaka, H., Fanis, A.D., Tamenori, Y. and Ueda, K., “C 1s and O 1s Photoelectron Spectra of Formaldehyde with Satellites: Theory and Experiment”, J. Electron. Spectrosc. Relat. Phenom., 142, 253–259 (2005) 10.1016/j.elspec.2004.09.011Search in Google Scholar
Lilienthal, H., Van Der Ven, L. T. M., Piersma, A. H. and Vos, J. G., “Effects of the Brominated Flame Retardant Hexabromocyclododecane (HBCD) on Dopamine-dependent Behavior and Brainstem Auditory Evoked Potentials in a One Generation Reproduction Study in Wistar Rats”, Toxicol. Lett., 185, 63–72 (2009) PMid:19111915 10.1016/j.toxlet.2008.12.002Search in Google Scholar PubMed
Liu, S. J., Zhou, F., Di, D. L. and Jiang, S.X., “Surface-confined Radical Chain Transfer the Intermediate Reaction for Chemically Attaching Polymer Films on Porous Silica for Chromatographic Application”, Colloids Surf. A: Physicochem. Eng. Aspects, 244, 87–93 (2004) 10.1016/j.colsurfa.2004.05.016Search in Google Scholar
Robinson, M. J., Stoltzfus, J. M. and Owens, T. N., “Composite Material Compatibility with Liquid Oxygen”, AIAA-97-1107; 973–982 (1997)10.2514/6.1997-1107Search in Google Scholar
Wang, G., Li, X. D., Yan, R. and Xing, S. L., “The Study on Compatibility of Polymer Matrix Resins with Liquid Oxygen”, Mater. Sci. Eng. B., 132, 70–73 (2006) 10.1016/j.mseb.2006.02.028Search in Google Scholar
Wu, Z. J., Gao, F., Yan, J. and Wang, Z., “Damage Mechanism of Polyphenylene Sulfide Resin in Liquid Oxygen”, Iran. Polym. J., 21, 185–190 (2012) 10.1007/s13726-012-0015-4Search in Google Scholar
Yu, L., Wang, W. J. and Xiao, W. D., “The Effect of Decabromodiphenyl Oxide and Antimony Trioxide on the Flame Retardation of Ethyleneepropyleneediene Copolymer/Polypropylene Blends”, Polym. Degrad. Stab., 86, 69–73 (2004) 10.1016/j.polymdegradstab.2004.01.015Search in Google Scholar
© 2013, Carl Hanser Verlag, Munich