Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 30, 2014

Effect of Vetiver Grass Fiber on Soil Burial Degradation of Natural Rubber and Polylactic Acid Composites

  • P. Juntuek , P. Chumsamrong , Y. Ruksakulpiwat and C. Ruksakulpiwat

Abstract

In this study, vetiver grass fiber was used as a natural filler in natural rubber (NR) and polylactic acid (PLA) composite. Glycidyl methacrylate grafted natural rubber (NR-g-GMA) was used as a compatibilizer. The main objective of this research is to study the degradability of PLA and PLA composites under soil burial test. It was shown that vetiver grass fiber showed a significant role in the degradability of PLA composites under soil burial condition. Mechanical properties of PLA composites dramatically decreased after burial in soil compared to those of pure PLA. Moreover, addition of vetiver grass fiber at 20 and 30 % (w/w) content led to a significant increase in weight loss of the specimens with increasing burial time. From SEM micrographs, better interfacial adhesion between PLA, vetiver grass fiber, and NR particles was observed with the addition of NR-g-GMA. This indicated that the compatibility of PLA/vetiver/NR can be improved by using NR-g-GMA. Furthermore, mechanical properties of injection molded PLA and PLA composites were compared with those of compression molded samples. Injection molded specimens of neat PLA and PLA composites showed higher tensile strength than compression molded specimens. This may be due to the result of higher fiber orientation along flow direction in injection molding.


* Mail address: Chaiwat Ruksakulpiwat, Department of Chemistry, Khon Kaen University, Khon Kaen, Thailand, E-mail:

References

AbdullahA. M., AndrzejK. B., “Micro Fibre Reinforced PLA and PP Composites: Enzyme Modification, Mechanical and Thermal Properties”, Compos. Sci. Technol., 78, 1017 (2013) 10.1016/j.compscitech.2013.01.013Search in Google Scholar

Bledzki, A. K., Jaszkiewicz, A., “Mechanical Performance of Biocomposites Based on PLA and PHBV Reinforced with Natural Fibres – A Comparative Study to PP”, Compos. Sci. Technol., 70, 16871696 (2010) 10.1016/j.compscitech.2010.06.005Search in Google Scholar

Broz, M. E., Vanderhart, D. L. and Washburn, N. R., “Structure and Mechanical Properties of Poly(D,L-lactic acid)/Poly(E-caprolactone) Blends”, Biomater., 24, 41814190 (2003) 10.1016/S0142-9612(03)00314-4Search in Google Scholar PubMed

Carrascoa, F., Pagès, P., Gámez-Pérezc, J., Santanac, O. O. and Maspoch, M. L., “Processing of Poly(lactic acid): Characterization of Chemical Structure, Thermal Stability and Mechanical Properties”, Polym. Degrad. Stab., 95, 116125 (2010) 10.1016/j.polymdegradstab.2009.11.045Search in Google Scholar

Du, Y., Wu, T., Yan, N., Kortschot, M. T. and Farnood, R., “Fabrication and Characterization of Fully Biodegradable Natural Fiber-Reinforced Poly(lactic acid) Composites”, Composites: Part B, 56, 717723 (2014) 10.1016/j.compositesb.2013.09.012Search in Google Scholar

Faludi, G., Hári, J., Renner, K., Móczó, J. and Pukánszky, B., “Fiber Association and Network Formation in PLA/Lignocellulosic Fiber Composites”, Compos. Sci. Technol., 77, 6773 (2013) 10.1016/j.compscitech.2013.01.006Search in Google Scholar

Faruk, O., Bledzkia, A., Finkb, H. and Sain, M., “Biocomposites Reinforced with Natural Fibers: 2000–2010”, Prog. Polym. Sci., 37, 15521596 (2012) 10.1016/j.progpolymsci.2012.04.003Search in Google Scholar

Gu, S. Y., Zhang, K., Ren, J. and Zhan, H., “Melt Rheology of Polylactide/Poly(butylene adipate-Co-terephthalate) Blends”, Carbohyd. Polym., 74, 7985 (2008) 10.1016/j.carbpol.2008.01.017Search in Google Scholar

Juntuek, P., Ruksakulpiwat, C., Chumsamrong, P. and Ruksakulpiwat, Y., “Effect of Glycidyl Methacrylate-Grafted Natural Rubber on Physical Properties of Polylactic Acid and Natural Rubber Blends”, J. Appl. Polym. Sci., 125, 745754 (2012) 10.1002/app.36263Search in Google Scholar

Juntuek, P., Ruksakulpiwat, C., Chumsamrong, P. and Ruksakulpiwat, Y., “Glycidyl Methacrylate Grafted Natural Rubber: Synthesis, Characterization and Mechanical Property”, J. Appl. Polym. Sci., 122, 31523159 (2011) 10.1002/app.34324Search in Google Scholar

Kalka, S., Huber, T., Steinberg, J., Baronian, K., Müssig, J. and Staiger, M., “Biodegradability of All-Cellulose Composite LaminatesComposites: Part A, 59, 3744 (2014) 10.1016/j.compositesa.2013.12.012Search in Google Scholar

Kim, H. S., Kim, H. J., Lee, J. W. and Choi, I. G., “Biodegradability of Bio-Flour Filled Biodegradable Poly(butylene cuccinate) Bio-Composites in Natural and Compost Soil”, Polym. Degrad. Stab., 91, 11171127 (2006) 10.1016/j.polymdegradstab.2005.07.002Search in Google Scholar

Long, J., Michael, P. W. and Jinwen, Z., “Study of Biodegradable Polylactide/Poly(butylene adipate-Co-terephthalate) Blends”, Biomacromolecules, 7, 199207 (2006) 10.1021/bm050581qSearch in Google Scholar PubMed

Lunt, J., “Large-Scale Production, Properties and Commercial Applications of Polylactic Acid Polymers”, Polym. Degrad. Stab., 59, 145152 (1998) 10.1016/S0141-3910(97)00148-1Search in Google Scholar

Masud, S. H., Lawrence, T. D., Amar, K. M. and Manjusri, M., “Chopped Glass and Recycled Newspaper As Reinforcement Fibers in Injection Molded Poly(lactic acid) (PLA) Composites: A Comparative Study”, Compos. Sci. Technol., 66, 18131824 (2006) 10.1016/j.compscitech.2005.10.015Search in Google Scholar

Nina, G., Axel, S. H. and Jorg, M., “Natural and Man-Made Cellulose Fibre-Reinforced Poly(lactic acid) (PLA) Composites: An Overview about Mechanical Characteristics and Application Areas”, Composites: Part A, 40, 810821 (2009) 10.1016/j.compositesa.2009.04.003Search in Google Scholar

Oksman, K., Skrifvars, M. and Selin, J. F., “Natural Fibres as Reinforcement in Polylactic Acid (PLA) Composites”, Compos. Sci. Technol., 63, 13171324 (2003) 10.1016/S0266-3538(03)00103-9Search in Google Scholar

Ratto, J. A., Stenhouse, P. J., Auerbach, M., Mitchell, J. and Farrell, R., “Processing, Performance and Biodegradability of a Thermoplastic Aliphatic Polyester Starch System”, Polymer, 40, 67776788 (1999) 10.1016/S0032-3861(99)00014-2Search in Google Scholar

Ruksakulpiwat, Y., Srideea, J., Suppakarn, N. and Sutapun, W., “Improvement of Impact Property of Natural Fiber-Polypropylene Composite by Using Natural Rubber and EPDM Rubber”, Composites: Part B, 40, 619622 (2009) 10.1016/j.compositesb.2009.04.006Search in Google Scholar

Ruksakulpiwat, Y., Suppakarn, N., Sutapun, W. and Thomthong, W., “Vetiver-Polypropylene Composites: Physical and Mechanical Properties”, Composites: Part A, 38, 590601 (2007) 10.1016/j.compositesa.2006.02.006Search in Google Scholar

Sarazin, P., Li, G., Orts, W. J. and Favis, B. D., “Binary and Ternary Blends of Polylactide, Polycaprolactone and Thermoplastic Starch”, Polymer, 49, 599609 (2008) 10.1016/j.polymer.2007.11.029Search in Google Scholar

Shibata, M., Inoue, Y. and Miyoshi, M., “Mechanical Properties, Morphology, and Crystallization Behavior of Blends of Poly(L-lactide) with Poly(butylene succinate-Co-L-lactate) and Poly(butylene succinate)”, Polymer, 47, 35573564 (2006) 10.1016/j.polymer.2006.03.065Search in Google Scholar

Singh, R. P., Pandey, J. K., Rutot, D. and Degee, P. H., “Dubois PH. Biodegradation of Poly(3-caprolactone)/Starch Blends and Composites in Composting and Culture Environment: The Effect of Compatibilization on the Inherent Biodegradability of the Host Polymer”, Carbohydr. Res., 338, 17591769 (2003) 10.1016/S0008-6215(03)00236-2Search in Google Scholar

Somnuk, U., Eder, G., Phinyocheep, P., Suppakarn, N., Sutapun, W. and Ruksakulpiwat, Y., “Quiescent Crystallization of Natural Fibers Polypropylene Composites”, J. Appl. Polym. Sci., 106, 29973006 (2007) 10.1002/app.26883Search in Google Scholar

Speranza, V., De Meo, A. and Pantani, R., “Thermal and Hydrolytic Degradation Kinetics of PLA in the Molten State”, Polym. Degrad. Stab., 100, 3741 (2014) 10.1016/j.polymdegradstab.2013.12.031Search in Google Scholar

Tserki, V., Matzinos, P. and Panayiotou, C., “Effect of Compatibilization on the Performance of Biodegradable Composites Using Cotton Fiber Waste as Filler”, J. Appl. Polym. Sci., 88, 18251835 (2003) 10.1002/app.11812Search in Google Scholar

Van Den Oever, M. J. A., Beck, B. and Müssig, J., “Agrofibre Reinforced Poly(lactic acid) Composites: Effect of Moisture on Degradation and Mechanical Properties”, Composites Part A, 41, 16281635 (2010) 10.1016/j.compositesa.2010.07.011Search in Google Scholar

Wan, Y. Z., Luo, H., He, F., Liang, H., Huang, Y. and Li, X. L., “Mechanical, Moisture Absorption, and Biodegradation Behaviours of Bacterial Cellulose Fibre-Reinforced Starch Biocomposites”, Compos. Sci. Technol., 69, 12121217 (2009) 10.1016/j.compscitech.2009.02.024Search in Google Scholar

Wang, Y., Steinhoff, B., Brinkmann, C. and Alig, I., “In-Line Monitoring of the Thermal Degradation of Poly(L-lactic acid) during Melt Extrusion by UV-VIS Spectroscopy”, Polymer, 49, 125765 (2008) 10.1016/j.polymer.2008.01.010Search in Google Scholar

Wu, D., Zhang, Y., Zhang, M. and Zhou, W., “Phase Behavior and its Viscoelastic Response of Polylactide/Poly(E-caprolactone) Blend”, Euro. Polym. J., 44, 21712183 (2008) 10.1016/j.eurpolymj.2008.04.023Search in Google Scholar

Xie, L., Xu, H., Wang, Z. P., Li, X. J., Chen, J. B., Zhang, Z. J., Yin, H. M., Zhong, G. J., Lei, J. and Li, Z. M., “Toward Faster Degradation for Natural Fiber Reinforced Poly(lactic acid) Biocomposites by Enhancing the Hydrolysis-Induced Surface ErosionJ. Polym. Res., 21, 115 (2014) 10.1007/s10965-014-0357-zSearch in Google Scholar

Yokohara, T., Yamaguchi, M., “Structure and Properties for Biomass-Based Polyester Blends of PLA and PBS”, Euro. Polym. J., 44, 677685 (2008) 10.1016/j.eurpolymj.2008.01.008Search in Google Scholar

Received: 2013-06-10
Accepted: 2014-02-25
Published Online: 2014-06-30
Published in Print: 2014-07-30

© 2014, Carl Hanser Verlag, Munich

Downloaded on 29.9.2023 from https://www.degruyter.com/document/doi/10.3139/217.2836/html
Scroll to top button