Abstract
The effect of carbon nanotubes (CNTs) on the capillary extrusion behavior of low-density polyethylene (PE) was investigated. From the linear viscoelasticity and the morphology observation, it was found that the CNTs were well dispersed throughout the PE matrix and our system belonged to the semi-dilute regime. The strain hardening, which quantifies the extension of the PE chain, decreased by presence of CNTs in the uniaxial elongational deformation. In contrast, the normal stress difference was almost unaffected by CNTs in the shear deformation. The capillary extrusion behavior revealed that swell ratio decreased with increasing the CNT content although melt fracture was promoted. We summarize that the suppression of swell and promotion of melt fracture are attributable to the orientation of CNTs.
References
Ausias, G., Agassant, J. F. and Vincent, M., “Flow and Fiber Orientation Calculations in Reinforced Thermopastic Extruded Tubes”, Int. Polym. Proc., 9, 51–59 (1994) 10.3139/217.940051Search in Google Scholar
Bach, A., Almdal, K., Rasmussen, H. K. and Hassager, O., “Elongational Viscosity of Narrow Molar Mass Distribution Polystyrene”, Macromolecules, 36, 5174–5179 (2003) 10.1021/ma034279qSearch in Google Scholar
Batchelor, G. K., “The Stress Generated in a Non-Dilute Suspension of Elongated Particles by Pure Straining Motion”, J. Fluid Mech., 46, 813–829 (1971) 10.1017/S0022112071000879Search in Google Scholar
Chen, D. Z., Yang, H. Y., He, P. S. and Zhang, W. A., “Rheological and Extrusion Behavior of Intercalated High-Impact Polystyrene/Organomontmorillonite Nanocomposites”, Compos. Sci. Technol., 65, 1593–1600 (2005) 10.1016/j.compscitech.2005.01.011Search in Google Scholar
Chiba, K., Nakamura, K., “Numerical Solution of Fiber Suspension Flow through a Complex Channel”, J. Non-Newtonian Fluid Mech., 78, 167–185 (1998) 10.1016/S0377-0257(98)00067-6Search in Google Scholar
Cox, W. P., Merz, E. H., “Correlation of Dynamic and Steady-Flow Viscosities”, J. Polym. Sci., 28, 619–622 (1958) 10.1002/pol.1958.1202811812Search in Google Scholar
Dalir, H., Farahani, R. D., Nhim, V., Samson, B., Levesque, M. and Therriault, D., “Preparation of Highly Exfoliated Polyester-Clay Nanocomposites: Process-Property Correlations”, Langmuir, 28, 791–803 (2012) 10.1021/la203331hSearch in Google Scholar
Férec, J., Heuzey, M. C., Pérez-González, J., De Vargas, L., Ausias, G. and Carreau, P. J., “Investigation of the Rheological Properties of Short Glass Fiber-Filled Polypropylene in Extensional Flow”, Rheol. Acta, 48, 59–72 (2009) 10.1007/s00397-008-0309-9Search in Google Scholar
Goutille, Y., Majeste, J. C., Tassin, J. F., Guillet, J., “Molecular Structure and Gross Melt Fracture Triggering”, J. Non-Newtonian Fluid Mech., 111, 175–198 (2003) 10.1016/S0377-0257(03)00054-5Search in Google Scholar
Handge, U. A., Zeiler, R., Dijkstr, D. J., Meyer, H. and Altstadt, V., “On the Determination of Elastic Properties of Composites of Polycarbonate and Multi-Wall Carbon Nanotubes in The Melt”, Rheol. Acta, 50, 503–518 (2011) 10.1007/s00397-011-0558-xSearch in Google Scholar
Hausnerova, B., Honkova, N., Lengalova, A., Kitano, T. and Saha, P., “Rheology and Fiber Degradation during Shear Flow of Carbon-Fiber-Reinforced Polypropylenes”, Polym. Sci. Ser. A, 48, 951–960 (2006) 10.1134/S0965545X06090100Search in Google Scholar
Kharchenko, S. B., Douglas, J. F., Obrzut, J., Grulke, E. A. and Migler, K. B., “Flow-Induced Properties of Nanotube-Filled Polymer Materials”, Nat. Mater., 3, 564–568 (2004) 10.1038/nmat1183Search in Google Scholar PubMed
Koyama, K., Ishizuka, O., “Nonlinearity in Uniaxial Elongational Viscosity at a Constant Strain Rate”, Polym. Proc. Eng., 1, 55–70 (1983)Search in Google Scholar
Larson, R. G.: The Structure and Rheology of Complex Fluids, 1rd Edition, Oxford University Press, New York (1999)Search in Google Scholar
Laun, H. M., “Orientation Effects and Rheology of Short Glass Fiber-Reinforced Thermoplastics”, Coll. Polym. Sci., 262, 257–269 (1984) 10.1007/BF01410464Search in Google Scholar
Le Meins, J. F., Moldenaers, P. and Mewis, J., “Suspensions of Monodisperse Spheres in Polymer Melts: Particle Size Effects in Extensional Flow”, Rheol. Acta, 42, 184–190 (2003) 10.1007/s00397-002-0270-ySearch in Google Scholar
Lubansky, A. S., Boger, D. V. and Cooper-White, J. J., “Batchelor's Theory Extended to Elongated Cylindrical or Ellipsoidal Particles”, J. Non-Newtonian Fluid Mech., 130, 57–61 (2005) 10.1016/j.jnnfm.2005.08.001Search in Google Scholar
Ma, P. C., Siddiqui, N. A., Marom, G. and Kim, J. K., “Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review”, Composites Part A, 41, 1345–1367 (2010) 10.1016/j.compositesa.2010.07.003Search in Google Scholar
Meller, M., Luciani, A., Sarioglu, A. and Manson, J. A. E., “Flow through a Convergence. Part 1: Critical Conditions for Unstable Flow”, Polym. Eng. Sci., 42, 611–633 (2002) 10.1002/pen.10976Search in Google Scholar
Mewis, J., Metzner, A. B., “The Rheological Properties of Suspensions of Fibers in Newtonian Fluids Subjected to Extensional Deformations”, J. Fluid. Mech., 62, 593–600 (1974) 10.1017/S0022112074000826Search in Google Scholar
Miyazono, K., Kagarise, C. D., Koelling, K. W., Mahboob, M. and Bechtel, S. E., “Shear and Extensional Rheology and Flow-Induced Orientation of Carbon Nanofiber/Polystyrene Melt Composites”, J. Appl. Polym. Sci., 119, 1940–1950 (2011) 10.1002/app.32923Search in Google Scholar
Mu, Y., Zhao, G. “Numerical Investigation of Die Geometry Effect on LDPE Annular Extrudate Swell”, J. Appl. Polym. Sci., 117, 91–109 (2010) 10.1002/app.31490Search in Google Scholar
Muenstedt, H., Katsikis, N. and Kaschta, J., “Rheological Properties of Poly(methyl methacrylate)/Nanoclay Composites as Investigated by Creep Recovery in Shear”, Macromolecules, 41, 9777–9783 (2008) 10.1021/ma800237xSearch in Google Scholar
Muksing, N., Nithitanakul, M., Grady, B. P. and Magaraphan, R., “Melt Rheology and Extrudate Swell of Organobentonite-Filled Polypropylene Nanocomposites”, Polym. Test., 27, 470–479 (2008) 10.1016/j.polymertesting.2008.01.008Search in Google Scholar
Nielsen, J. K., Rasmussen, H. K., Hassager, O. and Mckinley, G. H., “Elongational Viscosity of Monodisperse and Bidisperse Polystyrene Melts”, J. Rheol., 50, 453–476 (2006) 10.1122/1.2206711Search in Google Scholar
Nigen, S., Elkissi, N., Piau, J. M. and Sadun, S., “Velocity Field for Polymer Melts Extrusion Using Particle Image Velocimetry. Stable and Unstable Flow Regimes”, J. Non-Newtonian Fluid Mech., 112, 177–202 (2003) 10.1016/S0377–0257(03)00097-1Search in Google Scholar
Minegishi, A., Nishioka, A., Takahashi, T., Masubuchi, Y., Takimoto, J. and Koyama, K., “Uniaxial Elongational Viscosity of PS/a Small Amount of UHMW-PS Blends”, Rheol. Acta, 40, 329–338 (2001) 10.1007/s003970100165Search in Google Scholar
Nithikarnjanatharn, J., Ueda, H., Tanoue, S., Uematsu, H. and Iemoto, Y., “The Rheological Behavior and Thermal Conductivity of Melt-Compounded Polycarbonate/Vapor-Grown Carbon Fiber Composites”, Polym. J., 44, 427–432 (2012) 10.1038/pj.2011.149Search in Google Scholar
Rothstein, J. P., Mckinley, G. H., “The Axisymmetric Contraction–Expansion: The Role of Extensional Rheology on Vortex Growth Dynamics and the Enhanced Pressure Drop”, J. Non-Newtonian Fluid Mech., 98, 33–63 (2001) 10.1016/S0377-0257(01)00094-5Search in Google Scholar
Schmid, C. F., Switzer, L. H. and Klingenberg, D. J., “Simulations of Fiber Flocculation: Effects of Fiber Properties and Interfiber Friction”, J. Rheol., 44, 781–809 (2000) 10.1122/1.551116Search in Google Scholar
Sugimoto, M., Koizumi, T., Taniguchi, T., Koyama, K., Saito, K., Nonokawa, D. and Morita, T., “Melt Rheology of Hyperbranched-Polystyrene Synthesized with Multisite Macromonomer”, J. Polm. Sci., Part B: Polym. Phys., 47, 2226–2237 (2009) 10.1002/polb.21820Search in Google Scholar
Switzer, L. H., Klingenberg, D. J., “Rheology of Sheared Flexible Fiber Suspensions via Fiber-Level Simulations”, J. Rheol., 47, 759–778 (2003) 10.1122/1.1566034Search in Google Scholar
Takahashi, T., Takimoto, J. I. and Koyama, K., “Uniaxial Elongational Viscosity of Various Molten Polymer Composites”, Polym. Compos., 20, 357–366 (1999) 10.1002/pc.10362Search in Google Scholar
Tanoue, S., Iemoto, Y., “Effect of Die Gap Width on Annular Extrudates by the Annular Extrudate Swell Simulation in Steady-States”, Polym. Eng. Sci., 39, 2172–2180 (1999) 10.1002/pen.11606Search in Google Scholar
Trouton, F. T., “On the Coefficient of Viscous Traction and its Relation to that of Viscosity”, Proc. R. Soc. Lond. Ser. A, Contain Pap. Math. Phys., Character, 77, 426–440 (1906) 10.1098/rspa.1906.0038Search in Google Scholar
Uematsu, H., Horisawa, N., Horikida, T., Tanoue, S. and IemotoY., “Effect of Carbon Fiber on the Capillary Extrusion Behaviors of High-Density Polyethylene”, Polym. J., 45, 449–456 (2013) 10.1038/pj.2012.167Search in Google Scholar
Vega, J. F., Da Silva, Y., Vicente-Alique, E., Nunez-Ramirez, R., Trujillo, M., Arnal, M. L., Muller, A. J., Dubois, P. and Martinez-Salazar, J., “Influence of Chain Branching and Molecular Weight on Melt Rheology and Crystallization of Polyethylene/Carbon Nanotube Nanocomposites”, Macromolecules, 47, 5668–5681 (2014) 10.1021/ma501269gSearch in Google Scholar
Wagner, M. H., Kheirandish, S., Stange, J. and Muenstedt, H., “Modeling Elongational Viscosity of Blends of Linear and Long-Chain Branched Polypropylenes”, Rheol. Acta, 46, 211–221 (2006) 10.1007/s00397-006-0108-0Search in Google Scholar
Wassner, E., Schmidt, M. and Muenstedt, H., “Entry Flow of a Low-Density-Polyethylene Melt into a Slit Die: An Experimental Study by Laser-Doppler Velocimetry”, J. Rheol., 43, 1339–1353 (1999) 10.1122/1.551050Search in Google Scholar
Yamaguchi, M., Todd, D. B. and Gogos, C. G., “Rheological Properties of LDPE Processed by Conventional Processing Machines”, Adv. Polym. Technol., 22, 179–187 (2003) 10.1002/adv.10047Search in Google Scholar
© 2017, Carl Hanser Verlag, Munich
This work is licensed under the Creative Commons Attribution 4.0 International License.