Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 11, 2015

Heat Transfer Coefficient in Injection Molding of Polymers

  • M. Heinle and D. Drummer

Abstract

A polymer's thermal conditions during processing in injection molding define the polymer's structure and with this the properties of the final part. Thus prediction of the temperature in the part during processing is of great interest here. One important value for calculating the temperature is the heat transfer coefficient (HTC), or the thermal contact resistance (TCR) between polymer and mold. Because of this, significant work has been done on this topic. This article gives an impression of the importance of HTC in injection molding and an overview over work conducted in measuring and calculating the HTC and the up to now known influences on it.


* Mail address: Martina Heinle, Institute of Polymer Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Am Weichselgarten 9, D-91058 Erlangen-Tennenlohe, Germany, E-mail:

References

Ainoya, K., Amano, O., “Accuracy of Filling Analysis Program”, SPE ANTEC Tech. Papers, 726735 (2001)Search in Google Scholar

Bendada, A., Derdouri, A., Lamontagene, M. and Simard, Y., “Analysis of Thermal Contact Resistance between Polymer and Mold in Injection Molding”, Appl. Therm. Eng., 24, 20292040 (2004) 10.1016/j.applthermaleng.2003.12.027Search in Google Scholar

Blum, R., “Verbesserte Temperaturkontrolle beim Kunststoffspritzgießen”, Ph.D.Thesis, RWTH Aachen, Aachen, Germany (1996)Search in Google Scholar

Brunotte, R., “Die thermodynamischen und Verfahrenstechnischen Abläufe der in-situ-Oberflächenmodifizierung beim Spritzgießen”, Ph.D.Thesis, Technische Universität Chemnitz, Chemitz, Germany (2006)Search in Google Scholar

Dawson, A., Rides, M., Allen, C. R. G. and Urquhart, J. M., “Polymer-Mould Interface Heat Transfer Coefficient Measurements for Polymer Processing”, Polym. Test., 27, 555565 (2008) 10.1016/j.polymertesting.2008.02.007Search in Google Scholar

Delaunay, D., Le Bot, P., Fulchiron, R., Fuyé, J. F. and Regnier, G., “Nature of Contact between Polymer and Mold in Injection Molding: Part I: Influence of a Non-Perfect Thermal Contact”, Polym. Eng. Sci., 7, 16821691 (2000) 10.1002/pen.11300Search in Google Scholar

Dörner, J., “Spritzgießen elektrisch leitfähiger Thermoplaste – Prozesstechnik und Modellbildung”, Ph.D.Thesis, Universität Duisburg-Essen, Duisburg, Germany (2012)Search in Google Scholar

Ehrenstein, G. W.: Polymer Werkstoffe. Struktur – Eigenschaften – Anwendung, 2nd Edition, Hanser Publishers, Munich (1999)Search in Google Scholar

Farouq, Y., Nicolazo, C., Sarda, A. and Deterre, R., “Temperature Measurement in the Depth and at the Surface of Injected thermoplastic Parts”, Measurement, 38, 114 (2005) 10.1016/j.measurement.2005.04.002Search in Google Scholar

Fieberg, C., Kneer, R., “Bestimmung des Kontakt-Wärmeübergangskoeffizienten aus transienten Temperaturmessungen”, Chemie Ingenieur Technik, 79, 97102 (2007) 10.1002/cite.200600078Search in Google Scholar

Fletcher, L. S., Dietz, T. A., “Recent Developments in Contact Conductance Heat Transfer”, J. Heat Transfer, 11, 10591070 (1988) 10.1115/1.3250610Search in Google Scholar

Hall, J. A., Ceckler, W. H. and Thompson, E. V., “Thermal Properties of Rigid Polymers. I. Measurement of Thermal Conductivity and Questions concerning Contact Resistance”, J. Appl. Polym. Sci., 33, 20292039 (1987) 10.1002/app.1987.070330615Search in Google Scholar

Heinle, C., “Simulationsgestützte Entwicklung von Bauteilen aus wärmeleitenden Kunststoffen”, Ph.D.Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Tennenlohe, Germany (2012)Search in Google Scholar

Heinle, M., “Montagespritzgießen Von Mechatronischen Komponenten”, Ph.D.Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Tennenlohe, Germany (2014)Search in Google Scholar

Jungmeier, A., Kühnert, I., Ehrenstein, G. W. and Osswald, T. A., “Process Induced Morphological and Mechanical Properties of Micro Injection Molded Parts”, Proceedings of the Polymer Processing Society 25th Annual Meeting, Goa, India (2009)Search in Google Scholar

Jungmeier, A., Ehrenstein, G. W. and Drummer, D., “Improving Properties of Microparts by Slow Cooling”, SPE Plastics Research online (2009) 10.1002/Spepro.000038Search in Google Scholar

Kalwa, M., “Anwendung der Finite Elemente Methode zur Simulation von Wärmetransportvorgängen in der Kunststoffverarbeitung”, Ph.D.Thesis, RWTH Aachen, Aachen, Germany (1990)Search in Google Scholar

Kamal, M. R., Mutel, A. T., Salloum, G. and Garcia-Réjon, A., “Heat Transfer Measurement at the Mold Surface during Injection Molding of Thermoplastic Melts”, SPE ANTEC Tech. Papers, 483487 (1991)Search in Google Scholar

Le Goff, R., Delaunay, D., Boyard, N., Jarny, Y., Jurkowski, T. and Deterre, R., “On-Line Temperature Measurements for Polymer Thermal Conductivity Estimation under Injection Molding Conditions”, Int. J. Heat Mass Transfer, 52, 14451450 (2009) 10.1016/j.ijheatmasstransfer.2008.07.053Search in Google Scholar

Madhusudana, C. V., “Thermal Contact Conductance and Rectification at Low Joint Pressures”, Int. Comm. Heat Mass Transfer, 20, 123132 (1993) 10.1016/0735-1933(93)90013-LSearch in Google Scholar

Madhusudana, C. V.: Thermal Contact Conductance, Springer, New York (1996) 10.1007/978-1-4612-3978-9Search in Google Scholar

Marotta, E. E., Fletcher, L. S., “Thermal Contact Conductance of Selected Polymeric Materials”, J. Thermophys. Heat Transfer, 10 (2), 334342 (1996)10.2514/3.792Search in Google Scholar

Massé, H., Arquis, E., Delaunay, D., Quilliet, S. and Le Bot, P. H., “Heat Transfer with Mechanically Driven Thermal Contact Resistance at the Polymer-Mold Interface in Injection Molding of Polymers”, Int. J. Heat Mass Transfer, 47, 20152027 (2004) 10.1016/j.ijheatmasstransfer.2002.04.001Search in Google Scholar

Menges, G., Sahrholz, R.: Spritzgießen: Verfahrensablauf, Verfahrensparameter, Prozessführung, Hanser Publishers, Munich (1979)Search in Google Scholar

Nakao, M., Tsuchiya, K., Sadamitsu, T., Ichikohara, Y., Ohba, T. and Ooi, T., “Heat Transfer in Injection Molding for Reproduction of Sub-Micron-Sized Features”, Int. J. Adv. Manuf. Technol.38, 426432 (2008) 10.1007/s00170-007-1343-ySearch in Google Scholar

Narh, K. A., Sridhar, L., “Measurement and Modelling of Thermal Contact Resistance at a Plastic Metal Interface”, SPE ANTEC Tech. Papers, 22732277 (1997)Search in Google Scholar

Nguyen-Chung, T., Jüttner, G., Pham, T., Menning, G. and Gehde, M., “Die Bedeutung präziser Randbedingungen für die Simulation des Mikrospritzgießens”, Zeitschrift Kunststofftechnik/Journal of Plastics Technology, 4, 125 (2008)Search in Google Scholar

Nicolazo, C., Sarda, A., Vachot, P., Mousseau, P. and Deterre, R., “Change on Temperature at the Surface of Injection Molded Parts”, J. Mater. Process. Technol., 210, 233237 (2010) 10.1016/j.jmatprotec.2009.09.005Search in Google Scholar

Osswald, T., Hernández-Ortiz, J.-P.: Polymer Processing – Modelling and Simulation, Hanser Publishers, Munich (2006) 10.3139/9783446412866Search in Google Scholar

Parihar, S. K., Wright, N. T., “Thermal Contact Resistance at Elastomer to Metal Interfaces”, Int. Comm. Heat Mass Transfer, 24 (8), 10831092 (1997) 10.1016/S0735-1933(97)00102-4Search in Google Scholar

Quilliet, S., Le Bot, P., Delaunay, D. and Jarny, Y., “Heat Transfer at the Polymer-Metal Interface – A Method of Analysis and its Application to Injection Molding”, ASME Proceedings of the 32nd National Heat Transfer Conference, HTD-340, 2, 916 (1997)Search in Google Scholar

Rezayat, M., Jantzen, B., “Effects of Inserts on the Injection Molding Process”, Polym. Eng. Sci., 35, 247251 (1995) 10.1002/pen.760350305Search in Google Scholar

Rhee, B. O., Hieber, C. A. and Wang, K. K., “Experimental Investigation of Thermal Contact Resistance in Injection Molding”, SPE ANTEC Tech. Papers, 496500 (1994)Search in Google Scholar

Schwarzl, F. R.: Polymermechanik. Struktur und Mechanisches Verhalten von Polymeren, 2nd Edition, Springer, Berlin (1990)10.1007/978-3-642-61506-1Search in Google Scholar

Smoluchowski, M., “Ueber Wärmeleitung in verdünnten Gasen”, Ann. Phys. (Berlin), 300, 101130 (1898) 10.1002/andp.18983000110Search in Google Scholar

Song, S., Yovanovich, M. M., “Relative Contact Pressure: Dependence on Surface Roughness and Vickers Microhardness”, J. Thermophys., 1, 4347 (1988) 10.2514/3.60Search in Google Scholar

Song, S., Yovanovich, M. M. and Nho, K., “Thermal Gap Conductance: Effect of Gas Pressure and Mechanical Load”, J. Thermophys., 1, 6268 (1992) 10.2514/3.319Search in Google Scholar

Sridhar, L.: “Investigation of Thermal Contact Resistance at a Plastic-Metal Interface in Injection Molding”, Ph.D.Thesis, New Jersey Institute of Technology, USA (1999)Search in Google Scholar

Sridhar, L., Sedlak, B. M., and Narh, K. A., “Parametric Study of Heat Transfer in Injection Molding – Effect of Thermal Conduct Resistance”, Transactions of the ASME, 122, 98705 (2000)Search in Google Scholar

Stricker, M., “Determination of Heat Transfer Coefficient at the Polymer-Mould-Interface for Injection Molding Simulation by Means of Calorimetry”, 29th International Conference of the Polymer Processing Society, Nuremberg, Germany (2013)10.1063/1.4873750Search in Google Scholar

Urquhart, J. M., Brown, C. S., “The Effect of Uncertainty in Heat Transfer Data on the Simulation of Polymer Processing”, NPL Report DEPC-MPR001, National Physical Laboratory, Teddington, Middlesex, UK (2004)Search in Google Scholar

Verein Deutscher Ingenieure – VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC): VDI-Wärmeatlas, 10th Edition, Springer, Berlin (2006)Search in Google Scholar

Wang, H., Prystay, M., Hétu, J.-F., Cao, B. and Jen, C. K., “Gap between Mold and Part and its Effect on Cooling of Injection-Molded Plastics”, SPE ANTEC Tech. Papers, 10491053 (1996)Search in Google Scholar

Yu, C. J., Sunderland, J. E. and Poli, C., “Thermal Contact Resistance in Injection Molding”, Polym. Eng. Sci., 30, 15991606 (1990) 10.1002/pen.760302408Search in Google Scholar

Zhang, H. L., Ong, N. S. and Lam, Y. C., “Effects of Surface Roughness on Microinjection Molding”, Polym. Eng. Sci., 47, 20122019 (2007) 10.1002/pen.20904Search in Google Scholar

Received: 2015-02-12
Accepted: 2015-04-18
Published Online: 2015-08-11
Published in Print: 2015-08-14

© 2015, Carl Hanser Verlag, Munich

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.3139/217.3084/pdf
Scroll to top button