Abstract
Electrospinning is a fascinating technology for producing nanoscale fibers. In this study, jet velocities were investigated for the full jet range using microparticles as tracers. Significant differences were observed in the jet velocities as a function of the measuring position and direction. This suggests that the jets drive toward the collector and undergo jet separation after forming jet entanglements. The visual evidence confirmed the jet elongation data.
References
Bellan, L. M., Craighead, H. G., “Direct Measurement of Fluid Velocity in an Electrospining Jet Using Particle Image Velocimetry”, J. Appl. Phys., 102, 094308(1)–094308(5) (2007)10.1063/1.2799059Search in Google Scholar
Buer, A., Ugbolue, S. C. and Warner, S. B., “Electrospinning and Properties of some Nanofibers. Textile”, Textile. Res. J., 71, 323–328 (2001) 10.1177/004051750107100408Search in Google Scholar
Carroll, C. P., Joo, Y. L., “Axisymmetric Instabilities of Electrically Driven Viscoelastic Jets”, J. Non-Newtonian Fluid. Mech., 153, 130–148 (2008)10.1016/j.jnnfm.2007.12.005Search in Google Scholar
Cramariuc, B., Cramariuc, R., Scarlet, R., Manea, L. R., Lupu, I. G. and Cramariuc, O., “Fiber Diameter in Electrospinning Process”, J. Electrostat., 71, 189–198 (2013) 10.1016/j.elstat.2012.12.018Search in Google Scholar
Hayati, I., “Eddies inside a Liquid Cone Stressed by Interfacial Electrical Shear”, Colloids Surf., 65, 77–84 (1992)10.1016/0166-6622(92)80177-4Search in Google Scholar
Hohman, M. M., Shin, M., Rutledge, G. and Brenner, M. P., “Electrospinning and Electrically Forced Jets: I. Stability Theory. Phys. Fluids”, Phys. Fluids, 13, 2201–2220 (2001a)10.1063/1.1383791Search in Google Scholar
Hohman, M. M., Shin, M., Rutledge, G. and Brenner, M. P., “Electrospinning and Electrically Forced Jets: II. Applications”, Phys. Fluids, 13, 2221–2236 (2001b)10.1063/1.1384013Search in Google Scholar
Huebner, A. L., Chu, H. N., “Instability and Breakup of Charged Jets”, J. Fluid. Mech., 49, 361–372 (1971) 10.1017/S002211207100212XSearch in Google Scholar
Kong, C. S., Lee, S. G., Lee, S. H., Lee, K. Y., Noh, H. W., Yoo, W. S. and Kim, H. S., “Electrospinning Instabilities in the Drop Formation and Multi-Jet Ejection Part I: Various Concentrations of PVA (Polyvinyl Alcohol) Polymer Solution”, J. Macromol. Sci. B., 50, 517–527 (2011) 10.1080/00222341003781168Search in Google Scholar
Taylor, G. I., “Disintegration of Water Drops in an Electric Fields”, Proc. R. Soc. Lond. A, 280, 383–397 (1964) 10.1098/rspa.1964.0151Search in Google Scholar
Taylor, G. I., “Stability of a Horizontal Fluid Interface in a Vertical Electric Field”, J. Fluid. Mech., 22, 1–15 (1965) 10.1017/S0022112065000538Search in Google Scholar
Taylor, G. I., “Electrically Driven Jets”, Proc. R. Soc. Lond. A, 313, 453–475 (1969) 10.1098/rspa.1969.0205Search in Google Scholar
Reneker, D. H., Yarin, A. L., Fong, H. and Koombhongse, S., “Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning”, J. Appl. Phys., 87, 4531–4547 (2000) 10.1063/1.373532Search in Google Scholar
Reneker, D. H., Yarin, A. L., “Electrospinning Jets and Polymer Nanofibers”, Polymer, 49, 2387–2425 (2008) 10.1016/j.polymer.2008.02.002Search in Google Scholar
Yarin, A. L., Koombhongse, S. and Reneker, D. H., “Bending Instability in Electrospinnig of Nanofibers”, J. Appl. Phys., 89, 3018–3026 (2001) 10.1063/1.1333035Search in Google Scholar
Yu, J. H., Fridrikh, S. V. and Rutledge, G. C., “The Role of Elasticity in the Formation of Electrospun Fibers”, Polymer, 47, 4789–4797 (2006) 10.1016/j.polymer.2006.04.050Search in Google Scholar
© 2016, Carl Hanser Verlag, Munich