Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 20, 2017

Mullins Effect under Compression Mode and its Reversibility of Thermoplastic Vulcanizate Based on Ethylene-Vinyl Acetate Copolymer/Styrene-Butadiene Rubber Blend

  • C. C. Wang , Y.-F. Zhang , Q. Q. Liu and Z. B. Wang


The Mullins effect during uniaxial compression tests, together with its reversibility of the styrene-butadiene rubber (SBR)/carbon black (CB) vulcanizate and ethylene-vinyl acetate copolymer (EVA)/SBR/CB thermoplastic vulcanizate (TPV) were investigated systematically. The experimental results indicated that the Mullins effect could be observed during the cyclic uniaxial compression tests and accompanied with stress softening, residual deformation accumulation and hysteresis. The reversibility of the Mullins effect showed a temperature-dependence feature and was enhanced with increasing temperature. The morphology study showed that the SBR particles with average diameter of 10–20 μm were dispersed evenly in the etched surface of EVA/SBR/CB TPV.

*Correspondence address, Mail address: Zhaobo Wang, College of Material Science and Engineering, Qingdao University of Science and Technology, No. 53, Zhengzhou Road, Qingdao, 266042, PRC, E-mail: ;


Blanchard, A. F., Parkinson, D., “Breakage of Carbon-Rubber Networks by Applied Stress”, Ind. Eng. Chem., 44, 799812 (1952) 10.1021/ie50508a034Search in Google Scholar

Bluma, G., Fabricio, F., Marcia, G., Ana, C. F., Filiberto, G. and De Fatima, Maria S. L., “The Compatibilization of SBR/EVA by Mercapto-Modified EVA”, Eur. Polym. J., 37, 15771585 (2001) 10.1016/S0014-3057(01)00040-4Search in Google Scholar

Boyce, M. C., Socrate, S., Kear, K., Yeh, O. and Shaw, K., “Micromechanisms of Deformation and Recovery in Thermoplastic Vulcanizate”, J. Mech. Phys. Solids, 49, 13231342 (2001) 10.1016/S0022-5096(00)00066-1Search in Google Scholar

Diani, J., Fayolle, B. and Gilormini, P., “A Review on the Mullins Effect”, Eur. Polym. J., 45, 601612 (2009) 10.1016/j.eurpolymj.2008.11.017Search in Google Scholar

Drozdov, A. D., “Mullins' Effect in Semicrystalline Polymers”, Int. J. Solids. Struct., 46, 33363345 (2009a) 10.1016/j.ijsolstr.2009.05.001Search in Google Scholar

Drozdov, A. D., “Mullins' Effect in Thermoplastic Elastomers: Experiments and Modeling”, Mech Res Commun., 36, 437443 (2009b) 10.1016/j.mechrescom.2008.12.007Search in Google Scholar

Fukahori, Y., “New Progress in the Theory and Model of Carbon Black Reinforcement of Elastomers”, J. Appl. Polym. Sci., 95, 6067 (2005) 10.1002/app.20802Search in Google Scholar

Hanson, D. E., Hawley, M., Houlton, R., Chitanvis, K., Rae, P., Orler, E. B. and Wrobleski, D. A., “Stress Softening Experiments in Silica-Filled Polydimethylsiloxane Provide Insight into a Mechanism for the Mullins Effect”, Polymer, 46, 1098910995 (2005) 10.1016/j.polymer.2005.09.039Search in Google Scholar

Houwink, R., “Slipping of Molecules during the Deformation of Reinforced Rubber”, Rubber Chem. Technol., 29, 888893 (1956) 10.5254/1.3542602Search in Google Scholar

Kraus, G., Childers, C. W. and Rollman, K. W., “Stress Softening in Carbon Black Reinforced Vulcanizates. Strain Rate and Temperature Effects”, J. Appl. Polym. Sci., 10, 229244 (1966) 10.1002/app.1966.070100205Search in Google Scholar

Li, S., Wei, D. Y., Zhao, J. and Wang, Z. B., “Carbon Black Reinforced Thermoplastic Vulcanizates Based on High Impact Polystyrene/Styrene-Butadiene-Styrene Block Copolymer/Styrene-Butadiene Rubber Blends”, Int. Polym. Proc., 5, 594601 (2014) 10.3139/217.2917Search in Google Scholar

Marckmann, G., Verrona, E., Gorneta, L., Chagnona, G., Charrierb, P. and Fortb, P., “A Theory of Network Alteration for the Mullins Effect”, J. Mech. Phys. Solids, 50, 20112028 (2002) 10.1016/S0022-5096(01)00136-3Search in Google Scholar

Mossi Idrissa, A. K., Ahzi, S., Patlazhan, S., Remond, D. and Ruch, D., “A Constitutive Model for Stress-Strain Response and Mullins Effect in Filled Elastomers”, J. Appl. Polym. Sci., 125, 43684375 (2012) 10.1002/app.36596Search in Google Scholar

Mullins, L., “Effect of Stretching on the Properties of Rubber”, Rubber Chem. Technol., 21, 281300 (1948) 10.5254/1.3546914Search in Google Scholar

Mullins, L., Tobin, N. R., “Theoretical Model for the Elastic Behavior of Filler-Reinforced Vulcanized Rubbers”, Rubber Chem. Technol., 30, 555571 (1957) 10.5254/1.3542705Search in Google Scholar

Nakason, C., Nuansomsri, K., Kaesaman, A. and Kiatkamjornwong, S., “Dynamic Vulcanization of Natural Rubber/High-Density Polyethylene Blends: Effect of Compatibilization, Blend Ratio and Curing System”, Polym. Test., 25, 782796 (2006) 10.1016/j.polymertesting.2006.05.001Search in Google Scholar

Nicolini, A., Rocha, T. L. A. C. and Jacobi, M. A. M., “Dynamically Vulcanized PP/EPDM Blends: Influence of Curing Agents on the Morphology Evolution”, J. Appl. Polym. Sci., 109, 30933100 (2008) 10.1002/app.28322Search in Google Scholar

Oderkerk, J., Groeninckx, G., “Investigation of the Deformation and Recovery Behavior of Nylon-6/Rubber Thermoplastic Vulcanizates on the Molecular Level by Infrared-Strain Recovery Measurements”, Macromolecules, 35, 39463954 (2002) 10.1021/ma010651vSearch in Google Scholar

Palmieri, G., Sasso, M., Chiappini, G. and Amodio, D., “Mullins Effect Characterization of Elastomers by Multi-Axial Cyclic Tests and Optical Experimental Methods”, Mech. Mater., 41, 10591067 (2009) 10.1016/j.mechmat.2009.05.002Search in Google Scholar

Puertoals, J. A., Vadillo, J. L., Sanchez-Salcedo, S., Nieto, A., Gomez-Barrena, E. and Vallet-Regi, M., “Mullins Effect Behaviour under Compression in Micelle-Templated Silica and Micelle-Templated Silica/Agarose Systems”, J. Mater. Sci.: Mater. Med., 23, 229238 (2012) 10.1007/s10856-011-4482-5Search in Google Scholar PubMed

Radhakrishnan, C. K., Rosamma, A. and Unnikrishnan, G., “Thermal, Ozone and Gamma Ageing of Styrene Butadiene Rubber and Poly(ethylene-co-vinyl acetate) Blends”, Polym. Degrad. Stab., 91, 902910 (2006) 10.1016/j.polymdegradstab.2005.06.013Search in Google Scholar

Rickaby, S. R., Scott, N. H., “A Cyclic Stress Softening Model for the Mullins Effect”, Int. J. Solids. Struct., 50, 111120 (2013) 10.1016/j.ijsolstr.2012.09.006Search in Google Scholar

Wang, Z. B., Yu, W. J. and Cheng, X. K.Mechanical and Morphological Properties of Thermoplastic Vulcanisates Based on Ethylene Vinyl Acetate Copolymer and Styrene Butadiene Rubber”, Plast. Rubber Compos., 40, 229233 (2011) 10.1179/1743289810Y.0000000029Search in Google Scholar

Webber, R. E., Creton, C., Brown, H. R. and Gong, J. P., “Large Strain Hysteresis and Mullins Effect of Tough Double-Network Hydrogels”, Macromolecules, 40, 29192927 (2007) 10.1021/ma062924ySearch in Google Scholar

Wong-On, J., Wootthikanokkhan, J., “Dynamic Vulcanization of Acrylic Rubber-Blended PVC”, J. Appl. Polym. Sci., 88, 26572663 (2003) 10.1002/app.12070Search in Google Scholar

Zhao, J., Wang, C. and Wang, Z., “Mullins Effect and its Reversibility of Compatibilized Thermoplastic Vulcanisates Based on High Impact Polystyrene/High Vinyl Polybutadiene Rubber Blend”, Plast. Rubber Compos., 44, 155161 (2015) 10.1179/1743289815Y.0000000008Search in Google Scholar

Received: 2015-07-13
Accepted: 2016-06-26
Published Online: 2017-02-20
Published in Print: 2017-03-03

© 2017, Carl Hanser Verlag, Munich

Downloaded on 10.12.2023 from
Scroll to top button