Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 2, 2016

The Comparative Study of Different Mixing Methods for Microcrystalline Cellulose/Polyethylene Composites

  • S. Boran , A. Kiziltas , E. E. Kiziltas and D. J. Gardner


Polymer composites with polyethylene (PE), microcrystalline cellulose (MCC), and coupling agent (PE-g-MA) were melt blended using a single screw extruder (SSE), twin screw extruder (TSE), and a combination of SSE and extensional flow mixer (EFM) and masterbatch method (MB). The rheological behavior, mechanical, thermal, and morphological properties were investigated to compare material behavior of the MCC-filled PE composites and to evaluate the dispersive mixing efficiency. The composite samples prepared using a single pass method in SSE had relatively larger storage moduli (G′) while those from the TSE and SSE + EFM were smaller. The complex viscosities (η*) of composites with processed using EFM was higher than that of neat PE, indicating better dispersion of the MCC.MCC-filled PE composites processed with EFM showed higher tan delta compared to those of composites. In general, MCC-filled PE composites from the EFM process showed higher viscosity compared to all other composites at all shear rates. The EFM method improved flexural properties more than the other processing methods. The effect of EFM on impact strength of the composites was improved with coupling agent. Addition of MCC, couple agent, and different mixing methods did not significantly affect the thermal properties of the MCC-filled PE composites.

*Correspondence address, Mail address: Sevda Boran, Karadeniz Technical University, Faculty of Technology, Woodworking Industry Engineering, 61830, Trabzon, Turkey. E-mail:


ASTM D256-10, “Standard Test Method for Determining the Izod Pendulum Impact Resistance of Plastics”, ASTM International, West Conshohocken, PA (2010)Search in Google Scholar

ATM D638-10, “Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA (2010)Search in Google Scholar

ASTM D790-10, “Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials”, ASTM International, West Conshohocken, PA (2010)Search in Google Scholar

ASTM D5229M-14, “Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials”, ASTM International, West Conshohocken, PA (2014)Search in Google Scholar

Bourry, D., Godbille, F., Khayat, R. E., Luciani, A., Picot, J. and Utracki, L. A., “Extensional Flow of Polymeric Dispersions”, Polym. Eng. Sci., 39, 10721086 (1999) 10.1002/pen.11495Search in Google Scholar

Etelaaho, P., Nevalainen, K., Suihkonen, R., Vuorinen, J., Hanhi, K. and Jarvela, P., “Effects of Direct Melt Compounding and Masterbatch Dilution on the Structure and Properties of Nanoclay-Filled Polyolefins”, Polym. Eng. Sci., 49, 14381446 (2009) 10.1002/pen.21270Search in Google Scholar

George, J., Janardhan, R., Anand, J. S., Bhagawan, S. S. and Thomas, S., “Melt Rheological Behaviour of Short Pineapple Fibre Reinforced Low Density Polyethylene Composites”, Polymer, 37, 54215431 (1996) 10.1016/S0032-3861(96)00386-2Search in Google Scholar

Gonzalez-Sanchez, C., Fonseca-Valero, C., Ochoa-Mendoza, A., Garriga-Meco, A. and Rodrigues-Hurtado, E.Rheological Behavior of Original and Recycled Cellulose-Polyolefin Composite Materials”, Composites Part A, 42, 10751083 (2011) 10.1016/j.compositesa.2011.04.012Search in Google Scholar

Haafiz, M. K. M., Hassan, A., Zakaria, Z., Inuwa, I. M., Islam, M. S. and Jawaid, M., “Properties of Polyactic Acid Composites Reinforced with Oil Palm Biomass Microcrystalline Cellulose”, Carbohydr. Polym., 98, 139145 (2013) 10.1016/j.carbpol.2013.05.069Search in Google Scholar PubMed

Hassan, M. L., Mathew, A. P., Hassan, E. A., Fadel, S. and Oksman, K., “Improving Cellulose/Polypropylene Nanocomposites Properties with Chemical Modified Bagasse Nanofibers and Maleated Polypropylene”, J. Reinf. Plast. Compos., 33, 2333 (2014) 10.1177/0731684413509292Search in Google Scholar

Hatzikiriakos, S. G., Rathod, N. and Muliawan, E. B., “The Effect of Nanoclays on the Processibility of Polyolefins”, Polym. Eng. Sci., 45, 10981107 (2005) 10.1002/pen.20388Search in Google Scholar

Hoyos, C. G., Cristia, E. and Vasquez, A., “Effect of Cellulose Microcrystalline Particles on Properties of Cement Based Composites”, Mater. Des., 51, 810818 (2013) 10.1016/j.matdes.2013.04.060Search in Google Scholar

Inoue, T., Suzuki, T., “Selective Crosslinking Reaction in Polymer Blends, III. The Effects of the Crosslinking of Dispersed EPDM Particles on the Impact Behavior of PP/EPDM Blends”, J. Appl. Polym. Sci., 56, 11131125 (1995) 10.1002/app.1995.070560911Search in Google Scholar

Kaneko, M. L. Q. A., Romero, R. B., Goncalves, M. D. and Yoshida, I. V. P., “High Molar Mass Silicone Rubber Reinforced with Montmorillonite Clay Masterbatches:Morphology and Mechanical Properties”, Eur. Polym. J., 46, 881890 (2010) 10.1016/j.eurpolymj.2010.02.007Search in Google Scholar

Kiziltas, A., Gardner, D. J., Han, Y. and Yang, H-S., “Determining the Mechanical Properties of Microcrystalline Cellulose (MCC)-Filled PET-PTT Blend Composites”, Wood Fiber Sci., 42, 165176 (2010)Search in Google Scholar

Kiziltas, A., Gardner, D. J., Han, Y., Yang, H-S., “Dynamic Mechanical Behaviour and Thermal Properties of Microcrystalline Cellulose (MCC)-filled Nylon 6 Composites”, Thermochim. Acta, 519, 3843 (2011) 10.1016/j.tca.2011.02.026Search in Google Scholar

Kiziltas, A., Nazari, B., Gardner, D. J. and Bousfield, D. W., “Polyamide 6-Cellulose Composites: Effect of Cellulose Composition on Melt Rheology and Crystallization Behavior”, Polym. Eng. Sci., 54, 739746 (2014) 10.1002/pen.23603Search in Google Scholar

Li, J., Ton-That, M. T., Leelapornpisit, W., Utracki, L. A., “Melt Compounding of Polypropylene- Based Clay Nanocomposites”, Polym. Eng. Sci., 47, 14471458 (2007) 10.1002/pen.20841Search in Google Scholar

Lopez-Quintanilla, M. L., Sanchez-Valdes, S., de Valle, L. F. Ramos and Medellin-Rodriguez, F. J., “Effect of Some Compatibilizing Agents on Clay Dispersion of Polypropylene-Clay Nanocomposites”, J. Appl. Polym. Sci., 100, 47484756 (2005) 10.1002/app.23262Search in Google Scholar

Lozano, K., Yang, S. and Jones, R. E., “Nanofiber Toughened Polyethylene Composites”, Carbon, 42, 23292331 (2004) 10.1016/j.carbon.2004.03.021Search in Google Scholar

Luciani, A., Utracki, L. A., “The Extensional Flow Mixer”, Int. Polym. Proc., 11, 299309 (1996)10.3139/217.960299Search in Google Scholar

Mathew, A. P., Oksman, K. and Sain, M.Mechanical Properties of Biodegradable Composites from Poly Lactic Acid (PLA) and Microcrystalline Cellulose (MCC)”, J. Appl. Polym. Sci., 97, 20142025 (2005) 10.1002/app.21779Search in Google Scholar

Mirabella, F. M., Bafna, A., “Determination of the Crystallinity of Polyethylene/α-Olefin Copolymers by Thermal Analysis: Relationship of the Heat of Fusion of 100% Polyethylene Crystal and the Density”, J. Polym. Sci. Pol. Phys., 40, 16371643 (2002) 10.1002/polb.10228Search in Google Scholar

Mohanty, S., Nayak, S. K., “Rheological Characterization of HDPE/Sisal Fiber Composites”, Polym. Eng. Sci., 47, 16341642 (2007) 10.1002/pen.20847Search in Google Scholar

Mukherjee, T., Sani, M., Kao, N., Gupta, R. K., Quazzi, N. and Bhattacharya, S., “Improved Dispersion of Cellulose Microcrystals in Polylactic Acid (PLA) Based Composites Applying Surface Acetylation”, Chem. Eng. Sci., 101, 655662 (2013) 10.1016/j.ces.2013.07.032Search in Google Scholar

Nguyen, X. Q., Utracki, L. A., U.S. Patent 545110619 (1995)Search in Google Scholar

Nguyen, T. Q., Kausch, H. H.: Flexible Polymer Chains in Elongational Flow: Theory and Experiement, Springer, Berlin (1999) 10.1007/978-3-642-58252-3Search in Google Scholar

Ogah, A. O., Afiukwa, J. N. and Nduji, A. A., “Characterization and Comparison of Rheological Properties of Agro Fiber Filled High-Density Polyethylene Bio-Composites”, Polym. Chem., 4, 1219 (2014) 10.4236/ojpchem.2014.41002Search in Google Scholar

Okwonna, O. O., “The Effect of Pulping Concentration Treatment on the Properties of Microcrystalline Cellulose Powder Obtained from Waste Paper”, Carbohydr. Polym., 98, 721725 (2013) 10.1016/j.carbpol.2013.06.039Search in Google Scholar PubMed

Ozen, E., Kiziltas, A., Kiziltas, E. E. and Gardner, D. J., “Natural Fiber Blend-Nylon 6 Composites”, Polym. Compos., 34, 544553 (2013) 10.1002/pc.22463Search in Google Scholar

Palaniyandi, V., “Cellulose Reinforced High Density Polyethylene”, Master Thesis in Wood Science and Materials Science, Oregon State University, Corvallis, USA (2004)Search in Google Scholar

Petersson, L., Oksman, K., “Biopolymer Based Nanocomposites: Comparing Layered Silicates and Microcrystalline Cellulose as Nanoreinforcement”, Compos. Sci. Technol., 66, 21872196 (2006) 10.1016/j.compscitech.2005.12.010Search in Google Scholar

Pollanen, M., Suvanto, M. and Pakkanen, T. T., “Cellulose Reinforced High Density Polyethylene Composites-Morphology, Mechanical and Thermal Expansion Properties”, Compos. Sci. Technol., 76, 2128 (2013) 10.1016/j.compscitech.2012.12.013Search in Google Scholar

Prashantha, K., Soulestin, J., Lacrampe, M. F., Krawczak, P., Dupin, G. and Claes, M., “Masterbatch-Based Multi-Walled Carbon Nanotube Filled Polypropylene Nanocomposites: Assesment of Rheological and Mechanical Properties”, Compos. Sci. Technol., 69, 17561763 (2009) 10.1016/j.compscitech.2008.10.005Search in Google Scholar

Ramires, E. C., Dufresne, A., “A Review of Cellulose Nanocrystals and Nanocomposites”, Tappi J., 10, 916 (2011)10.32964/TJ10.4.9Search in Google Scholar

Rauwendaal, C., Rios, A., Osswald, T. A., Gramann, P., Davis, B., Noriega, M. P. and Estrada, O. A., “Experimental Study of A New Dispersive Mixer”, SPE ANTEC Tech. Papers, 277283 (1999)Search in Google Scholar

Rosa, D. S., Lenz, D. M., “Chapter 16 Biocomposites: Influence of Matrix Nature and Additives on the Properties and Biodegradation Behavior”, in Biodegradation-Engineering and Technology, Chamy, R., Rosenkranz, F., (Eds.), Intech, Rijeka, Croatia (2013)Search in Google Scholar

Sanadi, A., Caulfield, D. and Jacobson, R., “Chapter 12 Fiber/Thermoplastic Composites”, in Paper and Composites from Agro-based Resources, Young, R. A., Rowell, K. J., (Eds.), CRC Lewis Publishers, New York, USA (1997)Search in Google Scholar

Sentmanat, M., Stamboulides, C. and Hatzikiriakos, S. G., “A Novel Miniature Mixing Device for Polymeric Blends and Nanocomposites”, Polym. Eng. Sci., 49, 20922098 (2009) 10.1002/pen.21447Search in Google Scholar

Shumigin, D., Tarasova, E., Krumme, A. and Meier, P., “Rheological and Mechanical Properties of Poly(lactic) Acid/Cellulose and ldpe/Cellulose Composites”, Mater. Sci., 17, 3237 (2011)Search in Google Scholar

Spoljaric, S., Genovese, A. and Shanks, R. A., “Polypropylene-Microcrystalline Cellulose Composites with Enhanced Compatibility and Properties”, Composites Part A, 40, 791799 (2009) 10.1016/j.compositesa.2009.03.011Search in Google Scholar

Sun, X., Lu, C., Liu, Y., Zhang, W. and Zhang, X., “Melt-Processed Poly(vinyl alcohol) Composites Filled with Microcrystalline Cellulose from Waste Cotton Fabrics”, Carbohydr. Polym., 101, 642649 (2014) 10.1016/j.carbpol.2013.09.088Search in Google Scholar PubMed

Tan, J., Wang, X., Luo, Y., Jia, D., “Rubber/Clay Nanocomposites by Combined Latex Compunding and Melt Mixing: A Masterbatch Process”, Mater. Des., 34, 825831 (2012) 10.1016/j.matdes.2011.07.015Search in Google Scholar

Ten, E., Bahr, D. F., Li, B., Jiang, L. and Wolcott, M. P., “Effects of Cellulose Nanowhiskers on Mechanical, Dielectric, and Rheological Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Cellulose Nanowhisker Composites”, Ind. Eng. Chem. Res., 51, 29412951 (2012) 10.1021/ie2023367Search in Google Scholar

Thoorens, G., Krier, F., Leclercq, B., Carlin, B. and Evrard, B., “Microcrystalline Cellulose, a Direct Compression Binder in a Quality by Design Environment – A Review”, Int. J. Pharm., 473, 6472 (2014) 10.1016/j.ijpharm.2014.06.055Search in Google Scholar PubMed

Tokihisa, M., Yakemeto, K., Sakai, T., Utracki, L. A., Sepehr, M. and Simard, L. Y., “Extensional Flow Mixer for Polymer Nanocomposites”, Polym. Eng. Sci., 46, 10401050 (2006) 10.1002/pen.20542Search in Google Scholar

Trache, D., Donnot, A., Khimeche, K., Benelmir, R. and Brosse, N., “Physico-Chemical Properties and Thermal Stability of Microcrystalline Cellulose Isolated from Alfa Fibres”, Carbohydr. Polym., 104, 223230 (2014) 10.1016/j.carbpol.2014.01.058Search in Google Scholar PubMed

Treece, M. A., Zhang, W., Moffitt, R. D. and Oberhauser, J. P., “Twin-Screw Extrusion of Polypropylene-Clay Nanocomposites: Influence of Masterbatch Processing, Screw Rotation Mode, and Sequence”, Polym. Eng. Sci., 47, 898911 (2007) 10.1002/pen.20774Search in Google Scholar

Utracki, L. A., Luciani, A. and Bourry, J. J., U.S. Patent 6550956 (2003)Search in Google Scholar

Utracki, L. A., “Polymeric Nanocomposites:Compounding and Performance”, J. Nanosci. Nanotechnol., 8, 15821596 (2008) 10.1166/jnn.2008.004Search in Google Scholar

Wang, M., Wang, W., Liu, T. and Zhang, W. D., “Melt Rheological Properties of Nylon 6/Multi-Walled Carbon Nanotube Composites”, Compos. Sci. Technol., 68, 24982502 (2008) 10.1016/j.compscitech.2008.05.002Search in Google Scholar

Yang, H. S., Gardner, D. J., “Morphological Characteristics of Cellulose Nanofibril-filled Polypropylene Composites”, Wood Fiber Sci., 43, 215224 (2011)Search in Google Scholar

Yang, H. S., Gardner, D. J. and Nader, J. W., “Characteristic Impact Resistance Model Analysis of Cellulose Nanofibril-Filled Polypropylene Composites”, Composites Part A, 42, 20282035 (2011)Search in Google Scholar

Received: 2015-08-12
Accepted: 2015-09-29
Published Online: 2016-03-02
Published in Print: 2016-03-02

© 2016, Carl Hanser Verlag, Munich

Downloaded on 2.12.2023 from
Scroll to top button