Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 21, 2016

Effect of Brominated Epoxy Resins on the Thermal Stability and Flame Retardancy of Long-Glass-Fiber Reinforced Polyamide 6

D.-F. Zhou , F. Qi , X.-L. Chen , J.-B. Guo , X.-L. Zuo and H.-J. Shao

Abstract

In this work, the compounds of brominated epoxy resins and antimony trioxide (BER/Sb2O3) additives are analyzed and added into long-glass-fiber reinforced polyamide 6 (PA6/LGF) composites in order to solve the “candle-wick effect” caused by glass fibers. The thermal stability, flammability, and morphology of charred residues of the flame retardant PA6/LGF composites are investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL-94 test, cone calorimeter test (CCT), and scanning electronic microscopy (SEM). The results show the addition of BER/Sb2O3 provides improvements in flame retardancy by increasing the LOI values, enhancing UL-94 rating, and reducing the heat release rate, total heat release and effective heat of combustion due to the formation of consolidated and thick charred residual structures on the surfaces of the LGF reinforced PA6 composites. When the content of BER/Sb2O3 is increased to 12 wt%, the LOI value and UL-94 rating of BER/PA6/LGF composites reach 24.8 and V-0, respectively. The TGA results exhibit that the decomposition temperature of the PA6/LGF composites decreases with the addition of BER/Sb2O3 additive, resulting in forming some high quality residual char layer. A possible flame retardant mechanism is proposed to illustrate the effect of the gaseous and condensed phases on the flame retardancy of the PA6/LGF composites.


*Correspondence address, Mail address: Xiaolong Chen, Key Laboratory of Advanced Materials Technology Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PRC. E-mail:

References

Babrauskas, V., Peacock, R. D., “Heat Release Rate: The Single Most Important Variable in Fire Hazard“, Fire Saf. J., 18, 255272 (1992) 10.1016/0379-7112(92)90019-9Search in Google Scholar

Balabanovich, A. I., Hornung, A. and Merz, D., “The Effect of a Curing Agent on the Thermal Degradation of Fire Retardant Brominated Epoxy Resins“, Polym. Degrad. Stab., 85, 713723 (2004) 10.1016/j.polymdegradstab.2004.02.012Search in Google Scholar

Barontini, F., Marsanich, K., Petarca, L. and Cozzani, V., “Thermal Degradation and Decomposition Products of Electronic Boards Containing Bfrs“, Ind. Eng. Chem. Res., 44, 41864199 (2005) 10.1021/ie048766lSearch in Google Scholar

Bremmer, B. J., “Heat Stability of Brominated Epoxy Resins“, Ind. Eng. Chem. Prod. Res. Dev., 31, 5560 (1964) 10.1021/i360009a015Search in Google Scholar

Birnbaum, L.S., Staskal, D.F. and Diliberto, J. J., “Health Effects of Polybrominated Dibenzo-P-Dioxins (PBDDs) and Dibenzofurans (PBDFs)“, Environ. Int., 29, 85560 (2003) 10.1016/S0160-4120(03)00106-5Search in Google Scholar

Buser, H. R., “Polybrominated Dibenzofurans and Dibenzo-P-Dioxins: Thermal Reaction Products of Polybrominated Diphenylether Flame Retardants“, Environ. Sci. Technol., 20, 404408 (1986) 10.1021/es00146a015Search in Google Scholar

Carlsoon, L. A., Pipes, R. B.: Thermoplastic Composite Materials, Elsevier Science, New York, p. 171179 (1991)Search in Google Scholar

Casu, A., Camino, G., DeGiorgi, M., Flath, D., Laudi, A. and Morone, V., “Effect of Glass Fibres and Fire Retardant on the Combustion Behavior of Composites, Glass Fibrese Poly(butylene terephthalate)“, Fire Mater., 22, 714 (1998) 10.1002/(SICI)1099-1018(199801/02)22:1<7::AID-FAM623>3.0.CO;2-3Search in Google Scholar

Chen, X. L., Yu, J., Lu, S. J., Wu, H., Guo, S. Y. and Luo, Z., “Combustion Characteristics of Polypropylene/Magnesium Hydroxide/Expandable Graphite Composites“, Macromol. Sci. Part B: Phys., 48, 10811092 (2009) 10.1080/00222340903039396Search in Google Scholar

Chen, Y. H., Wang, Q., “Preparation, Properties and Characterizations of Halogen-Free Nitrogen Ephosphorous Flame-Retarded Glass Fiber Reinforced Polyamide 6 Composite“, Polym. Degrad. Stab., 91, 20032013 (2006) 10.1016/j.polymdegradstab.2006.02.006Search in Google Scholar

Gilbert, M. D., Schneider, N. S. and MacKnight, W. J., “Mechanism of the Dicyan-Diamide/Epoxide Reaction”, Macromolecules, 24, 360369 (1991) 10.1021/ma00002a004Search in Google Scholar

Han, K. Q., Liu, Z. J. and Yu, M. H., “Preparation and Mechanical Properties of Long Glass Fiber Reinforced PA6 Composites”, Macromol. Mater. Eng., 290, 688694 (2005) 10.1002/mame.200500051Search in Google Scholar

Huang, N. H., Chen, Z. J., Wang, J. Q. and Wei, P., “Synergistic Effects of Sepiolite on Intumescent Flame Retardant Polypropylene”, eXPRESS Polym. Lett., 4, 743752 (2010) 10.3144/expresspolymlett.2010.90Search in Google Scholar

Huang, X. H., Li, B., Shi, B. L. and Li, L. P., “Investigation on Interfacial Interaction of Flame Retarded and Glass Fiber Reinforced PA66 Composites by IGC/DSC/SEM”, Polymer, 49, 10491055 (2008) 10.1016/j.polymer.2007.12.037Search in Google Scholar

Kandola, B. K., Horrocks, A. R., Myler, P. and Blair, D., “Mechanical Performance of Heat/Fire Damaged Novel Flame Retardant Glass-Reinforced Epoxy Composites”, Composites Part A, 34, 863873 (2003) 10.1016/S1359-835X(03)00156-8Search in Google Scholar

Levchik, S. V., Camino, G., Luda, M. P. and Costa, L., “Thermal Decomposition of 4,4-Diaminodiphenylsulfone”, Thermochim. Acta., 260, 217218 (1995) 10.1016/0040-6031(95)90498-0Search in Google Scholar

Liao, H. T., Wu, C. S., “Synthesis and Characterization of Polyethylene-Octene Elastomer/Clay/Biodegradable Starch Nanocomposites”, J. Appl. Polym. Sci., 97, 397404 (2005) 10.1002/app.21763Search in Google Scholar

Liu, Y., Deng, C.L., Zhao, J., Wang, J. S., Chen, L. and Wang, Y. Z., “An Efficiently Halogen-Free Flame-Retardant Long-Glass-Fiber-Reinforced Polypropylene System”, Polym. Degrad. Stab., 96, 363370 (2011) 10.1016/j.polymdegradstab.2010.02.033Search in Google Scholar

Liu, Y., Wang, D. Y., Wang, J. S., Song, Y. P. and Wang, Y. Z., “A Novel Intumescent Flame-Retardant LDPE System and its Thermo-Oxidative Degradation and Flame-Retardant Mechanisms”, Polym. Adv. Technol., 19, 15661575 (2008) 10.1002/pat.1171Search in Google Scholar

Liu, Y., Wang, Q., “Melamine Cyanurate-Microencapsulated Red Phosphorus Flame Retardant Unreinforced and Glass Fiber Reinforced Polyamide 66”, Polym. Degrad. Stab., 91, 31033109 (2006) 10.1016/j.polymdegradstab.2006.07.026Search in Google Scholar

Lu, C. X., Chen, T. and Cai, X. F., “Halogen-Free Intumescent Flame Retardant for ABS/PA6/SMA Alloys”, J. Macromol. Sci., Part B., 48, 651662 (2009)10.1080/00222340903070342Search in Google Scholar

Lu, C., Gao, X. P., Yang, D., Cao, Q. Q., Huang, X. H., Liu, J. C. and Zhang, Y. Q., “Influence of Clay Dispersion on Flame Retardancy of ABS/PA6/APP Blends”, Polym. Degrad. Stab., 107, 1020 (2014) 10.1016/j.polymdegradstab.2014.04.028Search in Google Scholar

Luda, M. P., Balabanovich, A. I. and Camino, G., “Thermal Decomposition of Fire Retardant Brominated Epoxy Resins”, J. Anal. Appl. Pyrol., 65, 2540 (2002) 10.1016/S0165-2370(01)00175-9Search in Google Scholar

Luda, M. P., Balabanovich, A. I. and Zanetti, M., “Thermal Decomposition of Fire Retardant Brominated Epoxy Resins Cured with Different Nitrogen Containing Hardeners”, Polym. Degrad. Stab., 92, 10881100 (2007) 10.1016/j.polymdegradstab.2007.02.004Search in Google Scholar

Morgan, A. B, Bundy, M., “Cone Calor Imeter Analysis of UL-94 V-Rated Plastics”, Fire Mater., 31, 257283 (2007) 10.1002/fam.937Search in Google Scholar

Moriwaki, T.Mechanical Property Enhancement of Glass Fibre-Reinforced Polyamide Composite Made by Direct Injection Moulding Process”, Composites Part A, 27, 379384 (1996) 10.1016/1359-835X(95)00038-4Search in Google Scholar

Schartel, B., Hull, T.R., “Development of Fire-Retarded Materials E Interpretation of Cone Calorimeter Data”, Fire Mater., 31, 327354 (2008) 10.1002/fam.949Search in Google Scholar

Truckenmuller, F., Fritz, H. G., “Injection Molding of Long Fiber-Reinforced Thermoplastics: A Comparison of Extruded and Pultruded Materials with Direct Addition of Roving Strands”, Polym. Eng. Sci., 31, 13161329 (1991) 10.1002/pen.760311806Search in Google Scholar

Wang, Z. Y., Feng, Z. Q., Liu, Y. and Wang, Q., “Flame Retarding Glass Fibers Reinforced Polyamide 6 by Melamine Polyphosphate/Polyurethane-Encapsulated Solid Acid”, J. Appl. Polym. Sci., 105, 33173322 (2007) 10.1002/app.26611Search in Google Scholar

Xu, Y., Chen, M., Ning, X., Chen, X. L., Sun, Z. D., Ma, Y. H., Yu, J., Zhang, Z. B., Bo, X. J., Yang, L. and Chen, Z. N., “Influences of Coupling Agent on Thermal Properties, Flammability and Mechanical Properties of Polypropylene/Thermoplastic Polyurethanes Filled with Expanded Graphite”, J. Therm. Aanal. Calorim., 115, 689695 (2014) 10.1007/s10973-013-3243-8Search in Google Scholar

Yan, W. X., Han, K. Q. and Qin, L. L., “Study on Long Fiber-Reinforced Thermoplastic Composites Prepared by In Situ Solid-State Polycondensation”, J. Appl. Polym. Sci., 2004, 91, 39593965. 10.1002/app.13627Search in Google Scholar

Zhao, C. S., Huang, F. L. and Xiong, W. C., “A Novel Halogen-Free Flame Retardant for Glass-Fiber-Reinforced Poly(ethylene terephthalate)”, Polym. Degrad. Stab., 2008, 93, 1188119310.1016/j.polymdegradstab.2008.03.010Search in Google Scholar

Zuo, X. L., Shao, H. J., Zhang, D. H., Hao, Z. and Guo, J. B., “Effects of Thermal-Oxidative Aging on the Flammability and Thermal-Oxidative Degradation Kinetics of Tris(tribromophenyl) Cyanurate Flame Retardant PA6/LGF Composites”, Polym. Degrad. Stab., 98, 27742783 (2013) 10.1016/j.polymdegradstab.2013.10.014Search in Google Scholar

Received: 2016-01-16
Accepted: 2016-04-30
Published Online: 2016-07-21
Published in Print: 2016-08-12

© 2016, Carl Hanser Verlag, Munich

Downloaded on 31.1.2023 from https://www.degruyter.com/document/doi/10.3139/217.3245/html
Scroll Up Arrow