Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 2, 2016

Fabrication and Characterization of Electrospun Thermoplastic Polyurethane/Fibroin Small-Diameter Vascular Grafts for Vascular Tissue Engineering

E. Yu, J. Zhang, J. A. Thomson and L.-S. Turng

Abstract

The demand for small-diameter blood vessel substitutes has been increasing due to a shortage of autograft vessels and problems with thrombosis and intimal hyperplasia with synthetic grafts. In this study, hybrid small-diameter vascular grafts made of thermoplastic polyurethane (TPU) and silk fibroin, which possessed a hybrid fibrous structure of an aligned inner layer and a random outer layer, were fabricated by the electrospinning technique using a customized striated collector that generated both aligned and random fibers simultaneously. A methanol post-treatment process induced the transition of fibroin protein conformation from the water-soluble, amorphous, and less ordered structures to the water-insoluble β-sheet structures that possessed robust mechanical properties and relatively slow proteolytic degradation. The methanol post-treatment also created crimped fibers that mimicked the wavy structure of collagen fibers in natural blood vessels. Ultrafine nanofibers and nanowebs were found on the electrospun TPU/fibroin samples, which effectively increased the surface area for cell adhesion and migration. Cyclic circumferential tensile test results showed compatible mechanical properties for grafts made of a soft TPU/fibroin blend compared to human coronary arteries. In addition, cell culture tests with endothelial cells after 6 and 60 days of culture exhibited high cell viability and good biocompatibility of TPU/fibroin grafts, suggesting the potential of applying electrospun TPU/fibroin grafts in vascular tissue engineering.


*Correspondence address, Mail address: Lih-Sheng Turng, Department of Mechanical Engineering, University of Wisconsin–Madison, Madison, WI, USA, 53706. E-mail:

References

Alessandrino, A., Marelli, B., Arosio, C., Fare, S., Tanzi, M. C. and Freddi, G., “Electrospun Silk Fibroin Mats for Tissue Engineering”, Eng. Life Sci., 8, 219225 (2008) 10.1002/elsc.200700067Search in Google Scholar

Altman, G. H., Diaz, F., Jakuba, C., Calabro, T., Horan, R. L., Chen, J., Lu, H., Richmond, J. and Kaplan, D. L., “Silk-Based Biomaterials”, Biomaterials, 24, 401416 (2003) 10.1016/S0142-9612(02)00353-8Search in Google Scholar

Baguneid, M. S., Seifalian, A. M., Salacinski, H. J., Murray, D., Hamilton, G. and Walker, M. G., “Tissue Engineering of Blood Vessels”, Br. J. Surg., 93, 282290 (2006) 10.1002/bjs.5256Search in Google Scholar PubMed

BASF, Elastollan TPU Electric & Electronics: http://www.elastollan.basf.us/industries/electric (2015)Search in Google Scholar

Baudis, S., Ligon, C., Seidler, K., Weigel, G., Grasl, C., BergmeisterH., Schima, H. and Liska, R., “Hard-Block Degradable Thermoplastic Urethane-Elastomers for Electrospun Vascular Prostheses”, J. Polym. Sci. Part A: Polym. Chem., 50, 12721280 (2012) 10.1002/pola.25887Search in Google Scholar

Bergmeister, H., Seyidova, N., Schreiber, C., Strobl, M., Grasl, C., Walter, I., Messner, B., Baudis, S., Fröhlich, S., Marchetti-Deschmann, M., Griesser, M., di Franco, M., Krssak, M., Liska, R. and Schima, H., “Biodegradable, Thermoplastic Polyurethane Grafts for Small Diameter Vascular Replacements”, Acta Biomater., 11, 104113 (2015) 10.1016/j.actbio.2014.09.003Search in Google Scholar PubMed

Catto, V., Farè, S., Freddi, G. and Tanzi, M. C., “Vascular Tissue Engineering: Recent Advances in Small Diameter Blood Vessel Regeneration”, ISRN Vascular Medicine, 2014, 127 (2014) 10.1155/2014/923030Search in Google Scholar

Chew, S. Y., Mi, R., Hoke, A. and Leong, K. W., “Aligned Protein–Polymer Composite Fibers Enhance Nerve Regeneration: A Potential Tissue-Engineering Platform”, Adv. Funct. Mater., 17, 12881296 (2007) 10.1002/adfm.200600441Search in Google Scholar PubMed PubMed Central

Cummings, C. L., Gawlitta, D., Nerem, R. M. and Stegemann, J. P., “Properties of Engineered Vascular Constructs Made from Collagen, Fibrin, and Collagen-Fibrin Mixtures”, Biomaterials, 25, 36993706 (2004) 10.1016/j.biomaterials.2003.10.073Search in Google Scholar PubMed

Ding, B., Li, C., Miyauchi, Y., Kuwaki, O. and Shiratori, S., “Formation of Novel 2D Polymer Nanowebs via Electrospinning”, Nanotechnology, 17, 36853691 (2006) 10.1088/0957-4484/17/15/011Search in Google Scholar

Enomoto, S., Sumi, M., Kajimoto, K., Nakazawa, Y., Takahashi, R., Takabayashi, C., Asakura, T. and Sata, M., “Long-Term Patency of Small-Diameter Vascular Graft Made from Fibroin, a Silk-Based Biodegradable Material”, J. Vasc. Surg., 51, 155164 (2010) 10.1016/j.jvs.2009.09.005Search in Google Scholar PubMed

Grasl, C., Bergmeister, H., Stoiber, M., Schima, H. and Weigel, G., “Electrospun Polyurethane Vascular Grafts: in Vitro Mechanical Behavior and Endothelial Adhesion Molecule Expression”, J. Biomed. Mater. Res. A, 93, 716723 (2010)Search in Google Scholar

Hasan, A., Memic, A., Annabi, N., Hossain, M., Paul, A., Dokmeci, M. R., Dehghani, F. and Khademhosseini, A., “Electrospun Scaffolds for Tissue Engineering of Vascular Grafts”, Acta Biomater., 10, 1125 (2014) 10.1016/j.actbio.2013.08.022Search in Google Scholar PubMed PubMed Central

Heidenreich, P. A., Trogdon, J. G., Khavjou, O. A., Butler, J., Dracup, K., Ezekowitz, M. D., Finkelstein, E. A., Hong, Y., Johnston, S. C., Khera, A., Lloyd-Jones, D. M., Nelson, S. A., Nichol, G., Orenstein, D., Wilson, P. W. and Woo, Y. J., “Forecasting the Future of Cardiovascular Disease in the United States: A Policy Statement from the American Heart Association”, Circulation, 123, 933944 (2011) 10.1161/CIR.0b013e31820a55f5Search in Google Scholar PubMed

Horan, R. L., Antle, K., Collette, A. L., Wang, Y., Huang, J., Moreau, J. E., Volloch, V., Kaplan, D. L. and Altman, G. H., “In Vitro Degradation of Silk Fibroin”, Biomaterials, 26, 33853393 (2005) 10.1016/j.biomaterials.2004.09.020Search in Google Scholar PubMed

Huang, C., Chen, R., Ke, Q., Morsi, Y., Zhang, K. and Mo, X., “Electrospun Collagen–Chitosan–TPU Nanofibrous Scaffolds for Tissue Engineered Tubular Grafts”, Colloids Surf., B, 82, 307315 (2011) 10.1016/j.colsurfb.2010.09.002Search in Google Scholar PubMed

Huang, J., Liu, L., and Yao, J., “Electrospinning of Bombyx Mori Silk Fibroin Nanofiber Mats Reinforced by Cellulose Nanowhiskers”, Fibers Polym., 12, 10021006 (2011) 10.1007/s12221-011-1002-7Search in Google Scholar

Isenberg, B. C., Williams, C., and Tranquillo, R. T., “Small-Diameter Artificial Arteries Engineered in Vitro”, Circ. Res., 98, 2535 (2006) 10.1161/01.RES.0000196867.12470.84Search in Google Scholar PubMed

Jing, X., Mi, H. Y., Salick, M. R., Cordie, T. M., Peng, X. F. and Turng, L. S., “Electrospinning Thermoplastic Polyurethane/Graphene Oxide Scaffolds for Small Diameter Vascular Graft Applications”, Mater. Sci. Eng., C, 49, 4050 (2015) 10.1016/j.msec.2014.12.060Search in Google Scholar PubMed

Lee, C. H., Shin, H. J., Cho, I. H., Kang, Y. M., Kim, I. A., Park, K. D. and Shin, J. W., “Nanofiber Alignment and Direction of Mechanical Strain Affect the ECM Production of Human ACL Fibroblast”, Biomaterials, 26, 12611270 (2005) 10.1016/j.biomaterials.2004.04.037Search in Google Scholar PubMed

Liu, H., Li, X., Zhou, G., Fan, H. and Fan, Y., “Electrospun Sulfated Silk Fibroin Nanofibrous Scaffolds for Vascular Tissue Engineering”, Biomaterials, 32, 37843793 (2011) 10.1016/j.biomaterials.2011.02.002Search in Google Scholar PubMed

Liu, W., Lipner, J., Moran, C. H., Feng, L., Li, X., Thomopoulos, S. and Xia, Y., “Generation of Electrospun Nanofibers with Controllable Degrees of Crimping through a Simple, Plasticizer-Based Treatment”, Adv. Mater., 27, 25832588 (2015) 10.1002/adma.201500329Search in Google Scholar PubMed PubMed Central

Lovett, M., Cannizzaro, C., Daheron, L., Messmer, B., Vunjak-Novakovic, G. and Kaplan, D. L., “Silk Fibroin Microtubes for Blood Vessel Engineering”, Biomaterials, 28, 52715279 (2007) 10.1016/j.biomaterials.2007.08.008Search in Google Scholar PubMed PubMed Central

Lovett, M., Eng, G., Kluge, J. A., Cannizzaro, C., Vunjak-Novakovic, G. and Kaplan, D. L., “Tubular Silk Scaffolds for Small Diameter Vascular Grafts”, Organogenesis, 6, 217224 (2010) 10.4161/org.6.4.13407Search in Google Scholar PubMed PubMed Central

Lovett, M. L., Cannizzaro, C., Vunjak-Novakovic, G. and Kaplan, D. L., “Gel Spinning of Silk Tubes for Tissue Engineering”, Biomaterials, 29, 46504657 (2008) 10.1016/j.biomaterials.2008.08.025Search in Google Scholar PubMed PubMed Central

Matsumoto, A., Chen, J., Collette, A. L., Kim, U. J., Altman, G. H., Cebe, P. and Kaplan, D. L., “Mechanisms of Silk Fibroin Sol-Gel Transitions”, J. Phys. Chem. B, 110, 2163021638 (2006) 10.1021/jp056350vSearch in Google Scholar PubMed

Mendis, S., Puska, P., and Norrving, B.: Global Atlas on Cardiovascular Disease Prevention and Control, World Health Organization in Collaboration with the World Heart Federation and the World Stroke Organization, Geneva (2011)Search in Google Scholar

Mi, H. Y., Jing, X., Salick, M. R., Cordie, T. M., Peng, X. F. and Turng, L. S., “Properties and Fibroblast Cellular Response of Soft and Hard Thermoplastic Polyurethane Electrospun Nanofibrous Scaffolds”, J. Biomed. Mater. Res. Part B, 103, 960970 (2015) 10.1002/jbm.b.33271Search in Google Scholar PubMed

Mi, H. Y., Salick, M. R., Jing, X., Crone, W. C., Peng, X. F. and Turng, L. S., “Electrospinning of Unidirectionally and Orthogonally Aligned Thermoplastic Polyurethane Nanofibers: Fiber Orientation and Cell Migration”, J. Biomed. Mater. Res. Part A, 103, 593603 (2015) 10.1002/jbm.a.35208Search in Google Scholar PubMed PubMed Central

Nakazawa, Y., Sato, M., Takahashi, R., Aytemiz, D., Takabayashi, C., Tamura, T., Enomoto, S., Sata, M. and Asakura, T., “Development of Small-Diameter Vascular Grafts Based on Silk Fibroin Fibers from Bombyx Mori for Vascular Regeneration”, J. Biomater. Sci. Polym. Ed., 22, 195206 (2011) 10.1163/092050609X12586381656530Search in Google Scholar PubMed

Pham, Q. P., Sharma, U. and Mikos, A. G., “Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review”, Tissue Eng., 12, 11971211 (2006) 10.1089/ten.2006.12.1197Search in Google Scholar PubMed

Ravi, S., Chaikof, E. L., “Biomaterials for Vascular Tissue Engineering”, Regen. Med., 5, 107120 (2010) 10.2217/rme.09.77Search in Google Scholar PubMed PubMed Central

Rezakhaniha, R., Agianniotis, A., Schrauwen, J. T. C., Griffa, A., Sage, D., Bouten, C. V. C., van de Vosse, F. N., Unser, M. and Stergiopulos, N., “Experimental Investigation of Collagen Waviness and Orientation in the Arterial Adventitia Using Confocal Laser Scanning Microscopy”, Biomech. Model Mechanobiol., 11, 461473 (2012) 10.1007/s10237-011-0325-zSearch in Google Scholar PubMed

Rockwood, D. N., Preda, R. C., Yücel, T., Wang, X., Lovett, M. L. and Kaplan, D. L., “Materials Fabrication from Bombyx Mori Silk Fibroin”, Nat. Protoc., 6, 16121631 (2011) 10.1038/nprot.2011.379Search in Google Scholar

Seifu, D. G., Purnama, A., Mequanint, K. and Mantovani, D., “Small-Diameter Vascular Tissue Engineering”, Nat. Rev. Cardiol., 10, 410421 (2013) 10.1038/nrcardio.2013.77Search in Google Scholar

Soffer, L., Wang, X., Zhang, X., Kluge, J., Dorfmann, L., Kaplan, D. L. and Leisk, G., “Silk-Based Electrospun Tubular Scaffolds for Tissue-Engineered Vascular Grafts”, J. Biomater. Sci. Polym. Ed., 19, 653664 (2008) 10.1163/156856208784089607Search in Google Scholar

Sonoda, H., Takamizawa, K., Nakayama, Y., Yasui, H. and Matsuda, T., “Small-Diameter Compliant Arterial Graft Prosthesis: Design Concept of Coaxial Double Tubular Graft and its Fabrication”, J. Biomed. Mater. Res., 55, 266276 (2001) 10.1002/1097-4636(20010605)55:3<266::AID-JBM1014>3.0.CO;2-CSearch in Google Scholar

Swartz, D. D., Russell, J. A. and Andreadis, S. T., “Engineering of Fibrin-Based Functional and Implantable Small-Diameter Blood Vessels”, Am. J. Physiol. Heart Circ. Physiol., 288, H1451H1460 (2005) 10.1152/ajpheart.00479.2004Search in Google Scholar

Tiwari, A., Salacinski, H., Seifalian, A. M. and Hamilton, G., “New Prostheses for Use in Bypass Grafts with Special Emphasis on Polyurethanes”, Cardiovasc. Surg., 10, 191197 (2002) 10.1016/S0967-2109(02)00004-2Search in Google Scholar

Van Andel, C. J., Pistecky, P. V. and Borst, C., “Mechanical Properties of Porcine and Human Arteries: Implications for Coronary Anastomotic Connectors”, Ann. Thorac. Surg., 76, 5864; Discussion 64–5 (2003) 10.1016/S0003-4975(03)00263-7Search in Google Scholar

Wang, H., Feng, Y., Fang, Z., Yuan, W. and Khan, M., “Co-Electrospun Blends of PU and PEG as Potential Biocompatible Scaffolds for Small-Diameter Vascular Tissue Engineering”, Mater. Sci. Eng., C, 32, 23062315 (2012) 10.1016/j.msec.2012.07.001Search in Google Scholar

Wang, Y., Kim, H. J., Vunjak-Novakovic, G. and Kaplan, D. L., “Stem Cell-Based Tissue Engineering with Silk Biomaterials”, Biomaterials, 27, 60646082 (2006) 10.1016/j.biomaterials.2006.07.008Search in Google Scholar

Weinberg, C. B., Bell, E., “A Blood Vessel Model Constructed from Collagen and Cultured Vascular Cells”, Science, 231, 397400 (1986) 10.1126/science.2934816Search in Google Scholar

Williamson, M. R., Black, R. and Kielty, C., “PCL–PU Composite Vascular Scaffold Production for Vascular Tissue Engineering: Attachment, Proliferation and Bioactivity of Human Vascular Endothelial Cells”, Biomaterials, 27, 36083616 (2006) 10.1016/j.biomaterials.2006.02.025Search in Google Scholar PubMed

Wise, S. G., Byrom, M. J., Waterhouse, A., Bannon, P. G., Weiss, A. S. and Ng, M. K., “A Multilayered Synthetic Human Elastin/Polycaprolactone Hybrid Vascular Graft with Tailored Mechanical Properties”, Acta Biomater., 7, 295303 (2011) 10.1016/j.actbio.2010.07.022Search in Google Scholar PubMed

World Health Organization, CVDs http://www.who.int/mediacentre/factsheets/fs317/en/(2015)Search in Google Scholar

Wu, H. C., Wang, T. W., Kang, P. L., Tsuang, Y. H., Sun, J. S. and Lin, F. H., “Coculture of Endothelial and Smooth Muscle Cells on a Collagen Membrane in the Development of a Small-Diameter Vascular Graft”, Biomaterials, 28, 13851392 (2007) 10.1016/j.biomaterials.2006.11.012Search in Google Scholar PubMed

Zdrahala, R. J., Zdrahala, I. J., “Biomedical Applications of Polyurethanes: A Review of Past Promises, Present Realities, and a Vibrant Future”, J. Biomater. Appl., 14, 6790 (1999)10.1177/088532829901400104Search in Google Scholar PubMed

Zhang, W. J., Liu, W., Cui, L. and Cao, Y., “Tissue Engineering of Blood Vessel”, J. Cell. Mol. Med., 11, 945957 (2007) 10.1111/j.1582-4934.2007.00099.xSearch in Google Scholar PubMed PubMed Central

Zhang, X., Baughman, C. B. and Kaplan, D. L., “In Vitro Evaluation of Electrospun Silk Fibroin Scaffolds for Vascular Cell Growth”, Biomaterials, 29, 22172227 (2008) 10.1016/j.biomaterials.2008.01.022Search in Google Scholar PubMed PubMed Central

Received: 2016-01-22
Accepted: 2016-03-30
Published Online: 2016-12-02
Published in Print: 2016-11-18

© 2016, Carl Hanser Verlag, Munich