Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 20, 2017

Design Guidelines to Balance the Flow Distribution in Complex Profile Extrusion Dies

A. Rajkumar, L. L. Ferrás, C. Fernandes, O. S. Carneiro, M. Becker and J. M. Nóbrega

Abstract

In this work a novel methodology to balance the flow distribution in complex extrusion dies is proposed. For this purpose, the profile cross section geometry is divided into simpler geometries (L and T shaped profiles), which are balanced with a surrogate model obtained by a detailed numerical study. The numerical simulations are performed considering the non-isothermal flow of Bird-Carreau inelastic fluids, and the numerical computations are performed with a solver implemented in OpenFOAM computational library. The proposed methodology is assessed with some case studies.


*Correspondence address, Mail address: Joao M. Nóbrega, IPC/I3N – Institute Polymers and Composites, Department of Polymer Engineering University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal, E-mail:

References

Carneiro, O. S.Nóbrega, J. M., Oliveira, P. J. and Pinho, F. T., “Flow Balancing in Extrusion Dies for Thermoplastic Profiles: Part II: Influence of the Design Strategy”, Int. Polym. Proc., 18, 307312 (2003) 10.3139/217.1746Search in Google Scholar

Carneiro, O. S., Nóbrega, J. M., Oliveira, P. J. and Pinho, F. T., “Accounting for Temperature-Dependent Properties in Viscoelastic Duct Flows”, Int. J. Heat Mass Transfer, 47, 11411158 (2004) 10.1016/j.ijheatmasstransfer.2003.10.004Search in Google Scholar

Carneiro, O. S., Nobrega, J. M.: Design of Extrusion Forming Tools, Smithers Rapra Technology Ltd., Shawbury, Shrewsbury, Shropshire (2012)Search in Google Scholar

Elgeti, S., Probst, M., Windeck, C., Behr, M., Michaeli, W. and Hopmann, C., “Numerical Shape Optimization as an Approach to Extrusion Die Design”, Finite Elem. Anal. Des., 61, 3543 (2012) 10.1016/j.finel.2012.06.008Search in Google Scholar

Ettinger, H., Pittman, J. and Sienz, J., “Optimization-Driven Design of Dies for Profile Extrusion: Parameterization, Strategy, and Performance”, Polym. Eng. Sci., 53, 189203 (2013) 10.1002/pen.23228Search in Google Scholar

Ettinger, H., Sienz, J., Pittman, J. and Polynkin, A., “Parameterization and Optimization Strategies for the Automated Design of UPVC Profile Extrusion Dies”, Struct. Multidiscip. Optim., 28, 180194 (2004) 10.1007/s00158-004-0440-xSearch in Google Scholar

Flow2000, Compuplast, http://www.compuplast.comSearch in Google Scholar

Goncalves, N. D. F., “Computer Aided Design of Extrusion Forming Tools for Complex Geometry Profiles”, Ph.D Thesis, University of Minho, Guimarães, Portugal (2013)Search in Google Scholar

Harten, A., “High Resolution Schemes for Hyperbolic Conservation Laws”, J. Comput. Phys., 49, 357393 (1983) 10.1016/0021-9991(83)90136-5Search in Google Scholar

Huneault, M., Lafleur, P. and Carreau, P., “Evaluation of the FAN Technique for Profile Die Design”, Int. Polym. Proc., 11, 5057 (1996) 10.3139/217.960050Search in Google Scholar

Hurez, P., Tanguy, P. and Blouin, D., “A New Design Procedure for Profile Extrusion Dies”, Polym. Eng. Sci., 36, 626635 (1996) 10.1002/pen.10450Search in Google Scholar

Jasak, H., Jemcov, A. and Tukovic, Z., “Openfoam: A C++ Library for Complex Physics Simulations”, International Workshop on Coupled Methods in Numerical Dynamics, 120 (2007)Search in Google Scholar

Lebaal, N., Schmidt, F. and Puissant, S., “Design and Optimization of Three-Dimensional Extrusion Dies, Using Constraint Optimization Algorithm”, Finite Elem. Anal. Des., 45, 333340 (2009) 10.1016/j.finel.2008.10.008Search in Google Scholar

Lehnhäuser, T., Schäfer, M., “A Numerical Approach for Shape Optimization of Fluid Flow Domains”, Comput. Meth. Appl. Mech. Eng., 194, 52215241 (2005) 10.1016/j.cma.2005.01.008Search in Google Scholar

Mckelvey, J. M., Ito, K., “Uniformity of Flow from Sheeting Dies”, Polym. Eng. Sci., 11, 258263 (1971) 10.1002/pen.760110314Search in Google Scholar

Mehta, B. V., Ghulman, H. and Gerth, R., “Extrusion Die Design: A New Methodology of Using Design of Experiments as a Precursor to Neural Networks”, JOM-e, 51 (9) (1999), http://www.tms.org/pubs/journals/JOM/9909/Mehta/Mehta-9909.htmlSearch in Google Scholar

Michaeli, W.: Extrusion Dies Design and Engineering Computations, Hanser Publishers, Munich (1984)Search in Google Scholar

Nóbrega, J. M., Carneiro, O. S., Oliveira, P. J. and Pinho, F.T., “Flow Balancing in Extrusion Dies for Thermoplastic Profiles Part I: Automatic Design”, Int. Polym. Proc., 18, 298306 (2003) 10.3139/217.1745Search in Google Scholar

Nóbrega, J. M., “Computer Aided Design of Forming Tools for the Production of Extruded Profiles”, Ph.D Thesis, University of Minho, Guimarães, Portugal (2004)Search in Google Scholar

Nóbrega, J. M., Carneiro, O. S., Oliveira, P. J. and Pinho, F. T., “Flow Balancing in Extrusion Dies for Thermoplastic Profiles: Part III: Experimental Assessment”, Int. Polym. Proc., 19, 225235 (2004a) 10.3139/217.1825Search in Google Scholar

Nóbrega, J. M., Carneiro, O. S., Oliveira, P. J. and Pinho, F. T., “Automatic Balancing of Profile Extrusion Dies: Experimental Assessment”, SPE Annual Technical Conference ANTEC 2004, Chicago, USA (2004b)Search in Google Scholar

PatankarS.V., Spalding, D. B., “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, Int. J. Heat Mass Transfer, 15, 17871806 (1972) 10.1016/0017-9310(72)90054-3Search in Google Scholar

Polycad, http://www.polydynamics.comSearch in Google Scholar

Sienz, J., Goublomme, A. and Luege, M., “Sensitivity Analysis for the Design of Profile Extrusion Dies”, Comput. Struct., 88, 610624 (2010) 10.1016/j.compstruc.2010.02.003Search in Google Scholar

Summers, J., Brown, R., “Practical Principles of Die Design–A Simplified Procedure, in Table Form, for Rigid PVC”, J VINYL ADDIT TECHN, 3, 215218 (1981) 10.1002/vnl.730030404Search in Google Scholar

Tadmor, Z., Gogos, C. G.: Principles of Polymer Processing, John Wiley & Sons, New Jersey (2006)Search in Google Scholar

Ulysse, P., “Optimal Extrusion Die Design to Achieve Flow Balance”, Int. J. Mach. Tools Manuf., 39, 10471064 (1999) 10.1016/S0890-6955(98)00082-0Search in Google Scholar

Ulysse, P., “Extrusion Die Design for Flow Balance Using FE and Optimization Methods”, Int. J. Mech. Sci., 44, 319341 (2002) 10.1016/S0020-7403(01)00093-5Search in Google Scholar

Wolfram, S., Wolfram Mathematica, http://www.wolfram.com/mathematica/?source=navSearch in Google Scholar

Wortberg, J., Haberstroh, E., Lutterbeck, J., Masberg, U., Schmidt, J. and Targiel, G., “Designing of Extrusion Lines”, Adv. Polym. Technol., 2, 75106 (1982) 10.1002/adv.1982.060020203Search in Google Scholar

Wu, C. Y., Hsu, Y. C., “Optimal Shape Design of an Extrusion Die Using Polynomial Networks and Genetic Algorithms”, Int. J. Adv. Manuf. Technol., 19, 7987 (2002) 10.1007/s001700200000Search in Google Scholar

Yilmaz, O., Gunes, H. and Kirkkopru, K., “Optimization of a Profile Extrusion Die for Flow Balance”, Fibers Polym., 15, 753761 (2014) 10.1007/s12221-014-0753-3Search in Google Scholar

Yu, Y. W., Liu, T. J., “A Simple Numerical Approach for the Optimal Design of an Extrusion Die”, J. Polym. Res., 5, 17 (1998) 10.1007/s10965-006-0033-zSearch in Google Scholar

Received: 2016-03-01
Accepted: 2016-07-10
Published Online: 2017-02-20
Published in Print: 2017-03-03

© 2017, Carl Hanser Verlag, Munich