Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 21, 2016

Matrix Degradation during High Speed Extrusion of Polypropylene/Clay Nanocomposites – Influence on Filler Dispersion

  • G. Normand , E. Peuvrel-Disdier and B. Vergnes

Abstract

We prepared polypropylene/organoclay nanocomposites by melt blending in a twin-screw extruder, exploring the domain of high screw speeds (up to 1 100 min−1). The samples were characterized at both microscale (size of agglomerates) and nanoscale (level of exfoliation). We show that, despite a satisfactory exfoliation, the polymer matrix suffered important thermomechanical degradation by chain scission. We propose a way to correct this degradation on the viscosity curves and we confirm that high screw speeds are not necessarily favorable to clay exfoliation, essentially because of the too high melt temperatures encountered during the process.


*Correspondence address, Mail address: Bruno Vergnes, MINES ParisTech, PSL Research University, CEMEF – Centre de Mise en Forme des Matériaux, UMR CNRS 7635, CS 10207, 06904 Sophia-Antipolis, France. E-mail:

References

Bahloul, W., Oddes, O., Bounor-Legaré, V., Mélis, F., CassagnauP. and Vergnes, B., “Reactive Extrusion Processing of Polypropylene/TiO2 Nanocomposites by in Situ Synthesis of the Nanofillers: Experiments and ModelingAIChE J., 57, 21742184 (2011) 10.1002/aic.12425Search in Google Scholar

Barbas, J. M., Machado, A. V. and Covas, J. A., “Evolution of Dispersion along the Extruder during the Manufacture of Polymer-Organoclay Nanocomposites”, Chem. Eng. Sci., 98, 7787 (2013) 10.1016/j.ces.2013.05.004Search in Google Scholar

Barbas, J. M., Machado, A. V. and Covas, J. A., “Processing Conditions Effect on Dispersion Evolution in a Twin-Screw Extruder: Polypropylene-Clay Nanocomposites”, Chem. Eng. Tech., 37, 257266 (2014) 10.1002/ceat.201300303Search in Google Scholar

Canevarolo, S. V., “Chain Scission Distribution Function for Polypropylene Degradation during Multiple Extrusions”, Polym. Degrad. Stab., 709, 7176 (2000) 10.1016/S0141-3910(00)00090-Search in Google Scholar

Cassagnau, P., “Melt Rheology of Organoclay and Fumed Silica Nanocomposites”, Polymer, 49, 21832196 (2008) 10.1016/j.polymer.2007.12.035Search in Google Scholar

Cervantes-Uc, J. M., Cauich-Rodriguez, J. V., Vazquez-Torres, H., Garfias-Mesias, L. F. and Paul, D. R., “Thermal Degradation of Commercially Available Organoclays Studied by TGA-FTIR”, Thermochim. Acta, 457, 92102 (2007) 10.1016/j.tca.2007.03.008Search in Google Scholar

Cho, J. W., Paul, D. R., “Nylon 6 Nanocomposites by Melt Compounding”, Polymer, 42, 10891094 (2001) 10.1016/S0032-3861(00)00380-3Search in Google Scholar

Cui, L., Khramov, D. M., Bielawski, C. W., Hunter, D. L., Yoon, P. J. and Paul, D. R., “Effect of Organoclay Purity and Degradation on Nanocomposite Performance, Part 1: Surfactant Degradation”, Polymer, 49, 37513761 (2008) 10.1016/j.polymer.2008.06.028Search in Google Scholar

Dintcheva, N. T., La Mantia, F. P., “Thermo-Mechanical Degradation of LDPE-Based Nanocomposites”, Macromol. Mat. Eng., 292, 855862 (2007) 10.1002/mame.200700075Search in Google Scholar

Doh, J. G., Cho, I., “Synthesis and Properties of Polystyrene-Organoammonium Montmorillonite Hybrid”, Polym. Bull., 41, 511518 (1998) 10.1007/s002890050395Search in Google Scholar

Domenech, T., Peuvrel-Disdier, E. and Vergnes, B., “Influence of Twin-Screw Processing Conditions on Structure and Properties of Polypropylene-Organoclay Nanocomposites”, Int. Polym. Proc., 27, 517526 (2012) 10.3139/217.2591Search in Google Scholar

Domenech, T., Peuvrel-Disdier, E. and Vergnes, B., “The Importance of Specific Mechanical Energy during Twin Screw Extrusion of Organoclay Based Polypropylene Nanocomposites”, Comp. Sci. Technol., 75, 714 (2013) 10.1016/j.compscitech.2012.11.016Search in Google Scholar

Domenech, T., Zouari, R., Peuvrel-Disdier, E. and Vergnes, B., “Formation of Fractal-Like Structure in Organoclay-Based Polypropylene Nanocomposites”, Macromolecules, 47, 34173427 (2014) 10.1021/ma5001354Search in Google Scholar

Fasulo, P. D., Rodgers, W. R., Ottaviani, R. A. and Hunter, D. L., “Extrusion Processing of TPO Nanocomposites”, Polym. Eng. Sci., 44, 10361045 (2004) 10.1002/pen.20097Search in Google Scholar

Fel, E., Massardier, V., Mélis, F., Vergnes, B. and Cassagnau, P., “Residence Time Distribution in a High Shear Twin Screw Extruder”, Int. Polym. Proc., 29, 7180 (2014) 10.3139/217.2805Search in Google Scholar

Fornes, T. D., Yoon, P. J. and Paul, D. R., “Polymer Matrix Degradation and Color Formation in Melt Processed Nylon 6/Clay Nanocomposites”, Polymer, 44, 75457556 (2003) 10.1016/j.polymer.2003.09.034Search in Google Scholar

Gelfer, M. Y., Burger, C., Chu, B., Hsiao, B. S., Drozdov, A. D., Si, M., Rafailovich, M., Sauer, B. B. and Gilman, J. W., “Relationships between Structure and Rheology in Model Nanocomposites of Ethylene-Vinyl-Based Copolymers and Organoclays”, Macromolecules, 38, 37653775 (2005) 10.1021/ma0475075Search in Google Scholar

Gilman, J. W., Jackson, C. L., Morgan, A. B., Harris, R., Giannelis, E. P., Wuthenow, M., Hilton, D. and Phillips, S. H., “Flammability Properties of Polymer-Layered-Silicate Nanocomposites. Polypropylene and Polystyrene Nanocomposites”, Chem. Mat., 12, 18661873 (2000) 10.1021/cm0001760Search in Google Scholar

Gloaguen, J. M., Lefebvre, J. M., “Plastic Deformation Behaviour of Thermoplastic/Clay Nanocomposites”, Polymer, 42, 58415847 (2001) 10.1016/S0032-3861(00)00901-0Search in Google Scholar

Gonzales-Gonzales, V. A., Neira-Velasquez, G. and Angulo-Sanchez, J. L., “Polypropylene Chain Scissions and Molecular Weight Changes in Multiple Extrusion”, Polym. Degrad. Stab., 60, 3342 (1998) 10.1016/S0141-3910(96)00233-9Search in Google Scholar

Hegde, R. R., Bhat, G. S., Spruiell, J. E. and Benson, R., “Structure and Properties of Polypropylene-Nanoclay Composites.” J. Polym. Res., 20, 113 (2013) 10.1007/s10965-013-0323-1Search in Google Scholar

Hinsken, H., Moss, S., Pauquet, J. R. and Zweifel, H., “Degradation of Polyolefins during Melt Processing”, Polym. Degrad. Stab., 34, 279293 (1991) 10.1016/0141-3910(91)90123-9Search in Google Scholar

Hong, C. H., Lee, Y. B., Bae, J. W., Jho, J. Y., Nam, B. U. and Hwang, T. W., “Preparation and Mechanical Properties of Polypropylene/Clay Nanocomposites for Automotive Parts Application”, J. Appl. Polym. Sci., 98, 427433 (2005) 10.1002/app.21800Search in Google Scholar

Incarnato, L., Scarfato, P., Russo, G. M., Di Maio, L., Iannelli, P. and Acierno, D., “Preparation and Characterization of New Melt Compounded Copolyamide Nanocomposite”, Polymer, 44, 46254634 (2003) 10.1016/S0032-3861(03)00360-4Search in Google Scholar

Kawasumi, M., Hasegawa, N., Kato, M. and Usuki, A., “Preparation and Mechanical Properties of Polypropylene-Clay Hybrids”, Macromolecules, 30, 63336338 (1997) 10.1021/ma961786hSearch in Google Scholar

Leonardi, F.: Détermination de la Distribution des Masses Molaires d'Homopolymères Linéaires par Spectrométrie Mécanique, Ph.D. Dissertation, Université de Pau et des Pays de l'Adour, Pau, France (1999)Search in Google Scholar

Lertwimolnun, W., Vergnes, B., “Influence of Compatibilizer and Processing Conditions on the Dispersion of Nanoclay in a Polypropylene Matrix.” Polymer, 46, 34623471 (2005) 10.1016/j.polymer.2005.02.018Search in Google Scholar

Lertwimolnun, W., Vergnes, B., “Effect of Processing Conditions on the Formation of Polypropylene/Organoclay Nanocomposites in a Twin Screw Extruder”, Polym. Eng. Sci., 46, 314323 (2006) 10.1002/pen.20458Search in Google Scholar

Lertwimolnun, W., Vergnes, B., “Influence of Screw Profile and Extrusion Conditions on the Microstructure of Polypropylene/Organoclay Nanocomposites”, Polym. Eng. Sci., 47, 21002109 (2007) 10.1002/pen.20934Search in Google Scholar

Lin, B., Thu, A., Heim, H.-P., Scheel, G. and Sundararaj, U., “Nylon 66/Clay Nanocomposite Structure Development in a Twin Screw Extruder”, Polym. Eng. Sci., 66, 824834 (2009) 10.1002/pen.21327Search in Google Scholar

Louizi, M., Massardier, V. and Cassagnau, P., “Contribution of High-Shear Processing to the Compatibilization of (PP/EPR)/PE Ternary Blends”, Int. Polym. Proc., 29, 674688 (2014) 10.1002/mame.201300268Search in Google Scholar

Massam, J., Pinnavaia, T. J., “Clay Nanolayer Reinforcement of a Glassy Epoxy Polymer”, Mat. Res. Soc., 520, 223232 (1998) 10.1557/PROC-520-223Search in Google Scholar

Médéric, P., Aubry, T. and Razafinimaro, T., “Structural and Rheological Properties as a Function of Mixing Energy for Polymer/Layered Silicate Nanocomposites”, Int. Polym. Proc., 24, 261266 (2009) 10.3139/217.2247Search in Google Scholar

Messersmith, P. B., Giannelis, E. P., “Synthesis and Barrier Properties of Poly(e-caprolactone)-Layered Silicate Nanocomposites.” J. Polym. Sci., 33, 10471057 (1995) 10.1002/pola.1995.080330707Search in Google Scholar

Modesti, M., Lorenzetti, A., Bon, D. and Besco, S., “Effect of Processing Conditions on Morphology and Mechanical Properties of Compatibilized Polypropylene Nanocomposites”, Polymer, 46, 1023710245 (2005) 10.1016/j.polymer.2005.08.035Search in Google Scholar

Modesti, M., Lorenzetti, A., Bon, D. and Besco, S., “Thermal Behaviour of Compatibilised Polypropylene Nanocomposite: Effect of Processing Conditions”, Polym. Degrad. Stab., 91, 672680 (2006). 10.1016/j.polymdegradstab.2005.05.018Search in Google Scholar

Nassar, N., Utracki, L. A. and Kamal, M. R.Melt Intercalation in Montmorillonite/Polystyrene Nanocomposites”, Int. Polym. Proc., 20, 423431 (2005) 10.3139/217.2014Search in Google Scholar

Peltola, P., Va, E., Vuorinen, J., Syrja, S. and Hanhi, K., “Effect of Rotational Speed of Twin Screw Extruder on the Microstructure and Rheological and Mechanical Properties of Nanoclay-Reinforced Polypropylene”, Polym. Eng. Sci., 46, 9951000 (2006) 10.1002/pen.20586Search in Google Scholar

Scatteia, L., Scarfato, P. and Acierno, D., “Processing, Rheology and Structure of Melt Compounded PBT-Clay Nanocomposites Having Different Chemical Composition”, E-Polym., 23, 115 (2006)Search in Google Scholar

Shah, R. K., Paul, D. R., “Organoclay Degradation in Melt Processed Polyethylene Nanocomposites”, Polymer, 47, 40754084 (2006) 10.1016/j.polymer.2006.02.031Search in Google Scholar

Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T. and Kamigaito, O., “Synthesis of Nylon 6-Clay Hybrid.” J. Mater. Res., 8, 11791184 (1992) 10.1557/JMR.1993.1179Search in Google Scholar

Vergnes, B., “The Use of Apparent Yield Stress to Characterize Exfoliation in Polymer Nanocomposites”, Int. Polym. Proc., 26, 229232 (2011) 10.3139/217.2462Search in Google Scholar

Wang, Z., Pinnavaia, T. J., “Nanolayer Reinforcement of Elastomeric Polyurethane”, Chem. Mat., 10, 37693771 (1998) 10.1021/cm980448nSearch in Google Scholar

Yano, K., Usuki, A. and Okada, A., “Synthesis and Properties of Polyimide-Clay Hybrid Films”, J. Polym. Sci., 35, 22892294 (1997) 10.1002/(SICI)1099-0518(199708)35:11<2289::AID-POLA20>3.0.CO;2-9Search in Google Scholar

Received: 2016-03-29
Accepted: 2016-05-06
Published Online: 2016-07-21
Published in Print: 2016-08-12

© 2016, Carl Hanser Verlag, Munich

Downloaded on 28.3.2023 from https://www.degruyter.com/document/doi/10.3139/217.3285/html
Scroll Up Arrow