Abstract
The multidimensional output-pressure behavior of non-Newtonian fluids in single-screw extrusion can only be determined by using numerical methods. We present two methods which employ mathematical models building on analytic equations developed using an evolutionary heuristic optimization algorithm. Both allow fast and stable calculation of the 2-dimensional throughput–pressure gradient relationship of single-screw extruders, rendering cost-intensive CFD simulations of the output-pressure behavior redundant. A performed error analysis showed that our methods yield good approximations of the numerically determined data.
References
Affenzeller, M., Wagner, S., Winkler, S. and Beham, A.: Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications, CRC Press, Boca Raton (2009)10.1201/9781420011326Search in Google Scholar
Affenzeller, M., Winkler, S. M., Kronberger, G., Kommenda, M., Burlacu, B. and Wagner, S.: “Chapter No. 10 Gaining Deeper Insights in Symbolic Regression”, in Genetic and Evolutionary Computation. Genetic Programming Theory and Practice XI, Riolo, R., Moore, J. H. and Kotanchek, M. (Eds.), Springer, New York, p. 175–190 (2014)10.1007/978-1-4939-0375-7_10Search in Google Scholar
Heuristic and Evolutionary Algorithms Laboratory. HeuristicLab. Retrieved from http://dev.heuristiclab.com/Search in Google Scholar
Holland, J. H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (1st MIT Press Ed.), Complex Adaptive Systems, MIT Press, Cambridge, Mass. (1992)10.7551/mitpress/1090.001.0001Search in Google Scholar
Koza, J. R.: Genetic Programming (3. Print), Genetic Programming Series, MIT Press, Cambridge, Mass. (1993)Search in Google Scholar
Kronberger, G., Wagner, S., Kommenda, M., Beham, A., Scheibenpflug, A. and Affenzeller, M.: “Chapter System Demonstrations Track, Knowledge Discovery through Symbolic Regression with HeuristicLab”, in Machine Learning and Knowledge Discovery in Databases, Flach, P. A., De Bie, T. and Cristianini, N. (Eds.), Volume 7524, Springer, Berlin, Heidelberg, p. 824–827 (2012) 10.1007/978-3-642-33486-3_56Search in Google Scholar
Potente, H., “Approximationsgleichungen für Schmelzeextruder”, Rheol. Acta, 22, 387–395 (1983) 10.1007/BF01333769Search in Google Scholar
Rauwendaal, C.: Polymer Extrusion, Hanser, Munich (2014) 10.3139/9781569905395Search in Google Scholar
Schwefel, H. P.: Evolutionsstrategie und numerische Optimierung, Technische UniversitätBerlin, Berlin (1975)Search in Google Scholar
Steller, R. T., “Theoretical Model for Flow of Polymer Melts in the Screw Channel”, Polym. Eng. Sci., 30, 400–407 (1990) 10.1002/pen.760300704Search in Google Scholar
Steller, R. T., Iwko, J., “Generalized Flow of Ellis Fluid in the Screw Channel”, Int. Polym. Proc., 16, 249–256 (2001) 10.3139/217.1650Search in Google Scholar
White, D. R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B. W., Kronberger, G. and Luke, S., “Better GP Benchmarks: Community Survey Results and Proposals”, Genetic Programming and Evolvable Machines, 14, 3–29 (2013) 10.1007/s10710-012-9177-2Search in Google Scholar
White, J. L., Potente, H. and Berghaus, U.: Screw Extrusion: Science and Technology. Progress in Polymer Processing, Hanser, Munich, Cincinnati (2003)10.3139/9783446434189.fmSearch in Google Scholar
© 2017, Carl Hanser Verlag, Munich