Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 1, 2019

Rheology and Extrusion Foaming of Partially Crosslinked Thermoplastic Vulcanizates Silicone

  • T. Métivier , P. Cassagnau , C. Forest , G. Martin and N. Garois

Abstract

This work focuses on the foaming behavior of thermoplastic vulcanized silicones (TPVs) in which partially crosslinked silicone nodules are dispersed. In these TPVs, silicone nodules dispersed in a low density polyethylene (LDPE) phase have an average size of about 1 μm. The crosslinking densities of the elastomer phase were selected according to their viscoelastic behavior. Surprisingly, linear and non-linear shear rheology appeared more sensitive to formulations than extensional rheology. Indeed, each formulation has an extensional rheological behavior similar to that of pure LDPE and meets the requirements for foaming applications in terms of elongation at break and melt strength. In accordance with non-linear shear rheology, the foaming behavior of these formulations has been correlated to extrusion foaming parameters that are known to control nucleation, i. e. pre-die pressure and die exit depressurization rate. With an appropriate crosslinking density of silicone nodules, the TPV foamability tends to the foamability of pure LDPE to reach a foam density of 0.54 g/cm3 with an average cell size of 140 ± 50 μm and a cell density of 3 × 105 cells/cm3. Since partially crosslinked silicone nodules cannot foam, it is assumed that they improve nucleation while allowing sufficient expansion of the LDPE phase.


*Correspondence address, Mail address: Philippe Cassagnau, Ingénierie des Matériaux Polymères, Université Lyon 1, CNRS UMR 5223, 15 Bd. Latarjet, 69622 Villeurbanne, France, E-mail:

References

Abdou-Sabet, S., Fath, M. A., U.S. Patent 4311628A (1982)Search in Google Scholar

Barroso, V. C., Ribeiro, S. P. and Maia, J. M., “Unusual Extensional Behavior of a Polystyrene/HIPS Blend”, Rheol. Acta, 42, 483490 (2003) 10.1007/s00397-003-0303-1Search in Google Scholar

Bledzki, A. K., Faruk, O., “Microcellular Injection Molded Wood Fiber-PP Composites: Part I – Effect of Chemical Foaming Agent Content on Cell Morphology and Physico-mechanical Properties”, J. Cell. Plast., 42, 6376 (2006) 10.1177/0021955X06060945Search in Google Scholar

Brewer, C. M., Chorvath, I., Lee, M. K., Lee, Y., Li, D., Nakanishi, K., Oldinski, R. L., Petroff, L. J., Rabe, R. L. and Romenesko, D. J., W.O. Patent 2002008335 A2 (2003)Search in Google Scholar

Cail, B. J., DeMarco, R. D., “New Heat and Oil Resistant Thermoplastic Vulcanizate (TPV) for Demanding Underhood Applications”, SAE International Technical Papers, 2003-01-0942 (2003) 10.4271/2003-01-0942Search in Google Scholar

Cassagnau, P., Martin, G. and Barrès, C., “Chapter 8 Reactive Systems and Thermoplastic Vulcanizates”, in Applied Polymer Rheology, John Wiley & Sons, New York, p. 241261 (2011) 10.1002/9781118140611.ch8Search in Google Scholar

Chang, E. M., Li, X., Mohebbi, A. and Park, C. B., “Optimizing Chemical Blowing Agent Content in Foam Injection Molding Process of PP”, SPE ANTEC Tech. Papers, 15711574 (2017)Search in Google Scholar

Chatterjee, T., Wiessner, S., Naskar, K. and Heinrich, G., “Novel Thermoplastic Vulcanizates (TPVs) Based on Silicone Rubber and Polyamide Exploring Peroxide Cross-linking”, eXPRESS Polym. Lett., 8, 220231 (2014) 10.3144/expresspolymlett.2014.26Search in Google Scholar

Coran, A. Y., Das, B. and Patel, R. P., U.S. Patent 4130535A (1978)Search in Google Scholar

Delebecq, E., Hamdani-Devarennes, S., Raeke, J., Lopez-Cuesta, J. M. and Ganachaud, F., “High Residue Contents Indebted by Platinum and Silica Synergistic Action during the Pyrolysis of Silicone Formulations”, ACS Appl. Mater. Interfaces, 3, 869880 (2011) PMid:21375272; 10.1021/am101216ySearch in Google Scholar PubMed

Dozeman, A. O., Wang, Y., U.S. Patent 6750292 B2 (2004)Search in Google Scholar

Drobny, J. G., “Thermoplastic Elastomers Prepared by Dynamic Vulcanization”, in Handbook of Thermoplastic Elastomers, William Andrew Publishing, Norwich, NY, p. 179190 (2007) 10.1016/B978-081551549-4.50007-4Search in Google Scholar

Dutta, A., Cakmak, M., “Foaming of Vulcanized PP/EPDM Blends Using Chemical Blowing Agents”, Rubber Chem. Technol., 65, 778791 (1992a) 10.5254/1.3538641Search in Google Scholar

Dutta, A., Cakmak, M., “Influence of Composition and Processing History on the Cellular Morphology of the Foamed Olefinic Thermoplastic Elastomers”, Rubber Chem. Technol., 65, 932955 (1992b) 10.5254/1.3538652Search in Google Scholar

Forest, C., Chaumont, P., Cassagnau, P., Swoboda, B. and Sonntag, P., “Polymer Nano-Foams for Insulating Applications Prepared from CO2 Foaming”, Prog. Polym. Sci., 41, 122145 (2015) 10.1016/j.progpolymsci.2014.07.001Search in Google Scholar

Garg, A., Gulari, E. and Manke, C. W., “Thermodynamics of Polymer Melts Swollen with Supercritical Gases”, Macromolecules, 27, 56435653 (1994) 10.1021/ma00098a019Search in Google Scholar

Garois, N., Sonntag, P., Hong, S., Martin, G. and Galpin, D., E.P. Patent 2380933 A1 (2011)Search in Google Scholar

Garois, N., Sonntag, P., Hong, S., Martin, G. and Galpin, D., U.S. Patent 8648145 B2 (2014)Search in Google Scholar

Gessler, A. M., Haslett, J. W. H., U.S. Patent 3037954A (1962)Search in Google Scholar

Goettlier, L. A., Richwine, J. R. and Wille, F. J., “The Rheology and Processing of Olefin-Based Thermoplastic Vulcanizates”, Rubber Chem. Technol., 55, 14481463 (1982) 10.5254/1.3535941Search in Google Scholar

Goharpey, F., Nazockdast, H. and Katbab, A. A., “Relationship between the Rheology and Morphology of Dynamically Vulcanized Thermoplastic Elastomers Based on EPDM/PP”, Polym. Eng. Sci., 45, 8494 (2005) 10.1002/pen.20232Search in Google Scholar

Gornowicz, G. A., Lupton, K. E., Romenesko, D. J., Struble, K. and Zhang, H., U.S. Patent 6013715A (2000)Search in Google Scholar

Guo, Q., Wang, J., Park, C. B. and Ohshima, M., “A Microcellular Foaming Simulation System with a High Pressure-Drop Rate”, Ind. Eng. Chem. Res., 45, 61536161 (2006) 10.1021/ie060105wSearch in Google Scholar

Han, C. D., Kim, Y. W. and Malhotra, K. D., “A Study of Foam Extrusion Using a Chemical Blowing Agent”, J. Appl. Polym. Sci., 20, 15831595 (1976) 10.1002/app.1976.070200615Search in Google Scholar

Kear, K. E.: Developments in Thermoplastic Elastomers, Rapra Publishing, Shrewsbury (2003)Search in Google Scholar

Kim, S. G., Park, C. B. and Sain, M., “Foamability of Thermoplastic Vulcanizates Blown with Various Physical Blowing Agents”, J. Cell. Plast., 44, 5367 (2008) 10.1177/0021955X07079224Search in Google Scholar

Kropp, D., Michaeli, W., Herrmann, T. and Schröder, O., “Foam Extrusion of Thermoplastic Elastomers Using CO2 as Blowing Agent”, J. Cell. Plast., 34, 304311 (1998) 10.1177/0021955X9803400402Search in Google Scholar

Kumar, V., Suh, N. P., “A Process for Making Microcellular Thermoplastic Parts”, Polym. Eng. Sci., 30, 13231329 (1990) 10.1002/pen.760302010Search in Google Scholar

Laguna-Gutierrez, E., Saiz-Arroyo, C., Velasco, J. I. and Rodriguez-Perez, M. A., “Low Density Polyethylene/Silica Nanocomposite Foams. Relationship between Chemical Composition, Particle Dispersion, Cellular Structure and Physical Properties”, Eur. Polym. J., 81, 173185 (2016) 10.1016/j.eurpolymj.2016.06.001Search in Google Scholar

Lee, S. T., Park, C. B.: Foam Extrusion: Principles and Pratices, CRC Press, London, New York (2000) 10.1201/9781420014129Search in Google Scholar

Li, Q., Matuana, L. M., “Foam Extrusion of High Density Polyethylene/Wood-Flour Composites Using Chemical Foaming Agents”, J. Appl. Polym. Sci., 88, 31393150 (2003) 10.1002/app.12003Search in Google Scholar

Lopez, L. M., Cosgrove, A. B., Hernandez-Ortiz, J. P. and Osswald, T. A., “Modeling the Vulcanization Reaction of Silicone Rubber”, Polym. Eng. Sci., 47, 675683 (2007) 10.1002/pen.20698Search in Google Scholar

Mani, S., Cassagnau, P., Bousmina, M. and Chaumont, P., “Morphology Development in Novel Composition of Thermoplastic Vulcanizates Based on PA12/PDMS Reactive Blends”, Macromol. Mater. Eng., 296, 909920 (2011) 10.1002/mame.201000406Search in Google Scholar

Michaeli, W.: Extrusion Dies for Plastics and Rubber, Hanser, Munich (1983)Search in Google Scholar

Peiti, C., Haudin, J.-M. and Vergnes, B., “Modification of Rheological Properties of Branched Polyethylenes by a Thermomechanical Treatment”, AIP Conference Proceedings, 1664, 170002 (2015) 10.1063/1.4918520Search in Google Scholar

Pesneau, I., Champagne, M., Gendron, R. and Huneault, M., “Foam Extrusion of PP–EMA Reactive Blends”, J. Cell. Plast., 38, 421440 (2002) 10.1177/0021955X02038005165Search in Google Scholar

Prakashan, K., Gupta, A. K. and Maiti, S. N., “Effect of Compatibilizer on Micromehanical Deformations and Morphology of Dispersion in PP/PDMS Blend”, J. Appl. Polym. Sci., 105, 28582867 (2007) 10.1002/app.26510Search in Google Scholar

Royer, J. R., DeSimone, J. M. and Khan, S. A., “High-Pressure Rheology and Viscoelastic Scaling Predictions of Polymer Melts Containing Liquid and Supercritical Carbon Dioxide”, J. Polym. Sci., Part B: Polym. Phys., 39, 30553066 (2001) 10.1002/polb.10057Search in Google Scholar

Sahnoune, A., “Foaming of Thermoplastic Elastomers with Water”, J. Cell. Plast., 37, 149159 (2001) 10.1106/E7WD-X288-XFK7-6E90Search in Google Scholar

Sato, Y., Masuoka, H., Takishima, S. and Takikawa, T., “Solubilities and Diffusion Coefficients of Carbon Dioxide and Nitrogen in Polypropylene, High-Density Polyethylene, and Polystyrene under High Pressures and Temperatures”, Fluid Phase Equilib., 162, 261276 (1999) 10.1016/S0378-3812(99)00217-4Search in Google Scholar

Sato, Y., Takikawa, T., Yamane, M., Takishima, S. and Masuoka, H., “Solubility of Carbon Dioxide in PPO and PPO/PS Blends”, Fluid Phase Equilib., 194–197, 847858 (2002) 10.1016/S0378-3812(01)00687-2Search in Google Scholar

Shah, V. M., Hardy, B. J. and Stern, S. A., “Solubility of Carbon Dioxide, Methane, and Propane in Silicone Polymers: Effect of Polymer Side Chains”, J. Polym. Sci., Part B: Polym. Phys., 24, 20332047 (1986) 10.1002/polb.1986.090240910Search in Google Scholar

Spitael, P., Macosko, C.W., and Sahnoune, A., “Extensional Rheology of Polypropylene and its Effect on Foaming of Thermoplastic Elastomers”, SPE ANTEC Tech. Papers (2002)Search in Google Scholar

Stange, J., Münstedt, H., “Rheological Properties and Foaming Behavior of Polypropylenes with Different Molecular Structures”, J. Rheol., 50, 907923 (2006) 10.1122/1.2351880Search in Google Scholar

Stern, S. A., Shah, V. M. and Hardy, B. J., “Structure-Permeability Relationships in Silicone Polymers”, J. Polym. Sci., Part B: Polym. Phys., 25, 12631298 (1987) 10.1002/polb.1987.090250607Search in Google Scholar

Tanaka, H., White, J. L., “Experimental Investigations of Shear and Elongational Flow Properties of Polystyrene Melts Reinforced with Calcium Carbonate, Titanium Dioxide, and Carbon Black”, Polym. Eng. Sci., 20, 949956 (1980) 10.1002/pen.760201406Search in Google Scholar

Utracki, L. A., Sammut, P., “On the Uniaxial Extensional Flow of Polystyrene/Polyethylene Blends”, Polym. Eng. Sci., 30, 10191026 (1990) 10.1002/pen.760301705Search in Google Scholar

Van Krevelen, D. W., Te Nijenhuis, K., “Chapter 3 Interfacial Energy Properties”, in Properties of Polymers, Elsevier, Amsterdam, p. 229244 (2009) 10.1016/B978-0-08-054819-7.00008-XSearch in Google Scholar

Wang, M., Ma, J., Chu, R., Park, C. B. and Nanqiao, Z., “Effect of the Introduction of Polydimethylsiloxane on the Foaming Behavior of Block-Copolymerized Polypropylene”, J. Appl. Polym. Sci., 123, 27262732 (2012) 10.1002/app.34854Search in Google Scholar

Wang, W., Zhou, S., Xin, Z., Shi, Y. and Zhao, S., “Polydimethylsiloxane Assisted Supercritical CO2 Foaming Behavior of High Melt Strength Polypropylene Grafted with Styrene”, Front. Chem. Sci. Eng., 10, 396404 (2016) 10.1007/s11705-016-1577-zSearch in Google Scholar

Wu, S., “Calculation of Interfacial Tension in Polymer Systems”, J. Polym. Sci. Polym. Symp., 34, 1930 (1971) 10.1002/polc.5070340105Search in Google Scholar

Yamaguchi, M., Miyata, H., “Strain Hardening Behavior in Elongational Viscosity for Binary Blends of Linear Polymer and Crosslinked Polymer”, Polym. J., 32, 164170 (2000) 10.1295/polymj.32.164Search in Google Scholar

Zhang, H., “Scale-Up of Extrusion Foaming Process for Manufacture of Polystyrene Foams Using Carbon Dioxide”, Phd Dissertation, University of Toronto, Toronto (2010)Search in Google Scholar

Received: 2018-07-20
Accepted: 2019-04-16
Published Online: 2019-08-01
Published in Print: 2019-08-13

© 2019, Carl Hanser Verlag, Munich

Downloaded on 4.2.2023 from https://www.degruyter.com/document/doi/10.3139/217.3741/html
Scroll Up Arrow