Abstract
This work focuses on the foaming behavior of thermoplastic vulcanized silicones (TPVs) in which partially crosslinked silicone nodules are dispersed. In these TPVs, silicone nodules dispersed in a low density polyethylene (LDPE) phase have an average size of about 1 μm. The crosslinking densities of the elastomer phase were selected according to their viscoelastic behavior. Surprisingly, linear and non-linear shear rheology appeared more sensitive to formulations than extensional rheology. Indeed, each formulation has an extensional rheological behavior similar to that of pure LDPE and meets the requirements for foaming applications in terms of elongation at break and melt strength. In accordance with non-linear shear rheology, the foaming behavior of these formulations has been correlated to extrusion foaming parameters that are known to control nucleation, i. e. pre-die pressure and die exit depressurization rate. With an appropriate crosslinking density of silicone nodules, the TPV foamability tends to the foamability of pure LDPE to reach a foam density of 0.54 g/cm3 with an average cell size of 140 ± 50 μm and a cell density of 3 × 105 cells/cm3. Since partially crosslinked silicone nodules cannot foam, it is assumed that they improve nucleation while allowing sufficient expansion of the LDPE phase.
References
Abdou-Sabet, S., Fath, M. A., U.S. Patent 4311628A (1982)Search in Google Scholar
Barroso, V. C., Ribeiro, S. P. and Maia, J. M., “Unusual Extensional Behavior of a Polystyrene/HIPS Blend”, Rheol. Acta, 42, 483–490 (2003) 10.1007/s00397-003-0303-1Search in Google Scholar
Bledzki, A. K., Faruk, O., “Microcellular Injection Molded Wood Fiber-PP Composites: Part I – Effect of Chemical Foaming Agent Content on Cell Morphology and Physico-mechanical Properties”, J. Cell. Plast., 42, 63–76 (2006) 10.1177/0021955X06060945Search in Google Scholar
Brewer, C. M., Chorvath, I., Lee, M. K., Lee, Y., Li, D., Nakanishi, K., Oldinski, R. L., Petroff, L. J., Rabe, R. L. and Romenesko, D. J., W.O. Patent 2002008335 A2 (2003)Search in Google Scholar
Cail, B. J., DeMarco, R. D., “New Heat and Oil Resistant Thermoplastic Vulcanizate (TPV) for Demanding Underhood Applications”, SAE International Technical Papers, 2003-01-0942 (2003) 10.4271/2003-01-0942Search in Google Scholar
Cassagnau, P., Martin, G. and Barrès, C., “Chapter 8 Reactive Systems and Thermoplastic Vulcanizates”, in Applied Polymer Rheology, John Wiley & Sons, New York, p. 241–261 (2011) 10.1002/9781118140611.ch8Search in Google Scholar
Chang, E. M., Li, X., Mohebbi, A. and Park, C. B., “Optimizing Chemical Blowing Agent Content in Foam Injection Molding Process of PP”, SPE ANTEC Tech. Papers, 1571–1574 (2017)Search in Google Scholar
Chatterjee, T., Wiessner, S., Naskar, K. and Heinrich, G., “Novel Thermoplastic Vulcanizates (TPVs) Based on Silicone Rubber and Polyamide Exploring Peroxide Cross-linking”, eXPRESS Polym. Lett., 8, 220–231 (2014) 10.3144/expresspolymlett.2014.26Search in Google Scholar
Coran, A. Y., Das, B. and Patel, R. P., U.S. Patent 4130535A (1978)Search in Google Scholar
Delebecq, E., Hamdani-Devarennes, S., Raeke, J., Lopez-Cuesta, J. M. and Ganachaud, F., “High Residue Contents Indebted by Platinum and Silica Synergistic Action during the Pyrolysis of Silicone Formulations”, ACS Appl. Mater. Interfaces, 3, 869–880 (2011) PMid:21375272; 10.1021/am101216ySearch in Google Scholar PubMed
Dozeman, A. O., Wang, Y., U.S. Patent 6750292 B2 (2004)Search in Google Scholar
Drobny, J. G., “Thermoplastic Elastomers Prepared by Dynamic Vulcanization”, in Handbook of Thermoplastic Elastomers, William Andrew Publishing, Norwich, NY, p. 179–190 (2007) 10.1016/B978-081551549-4.50007-4Search in Google Scholar
Dutta, A., Cakmak, M., “Foaming of Vulcanized PP/EPDM Blends Using Chemical Blowing Agents”, Rubber Chem. Technol., 65, 778–791 (1992a) 10.5254/1.3538641Search in Google Scholar
Dutta, A., Cakmak, M., “Influence of Composition and Processing History on the Cellular Morphology of the Foamed Olefinic Thermoplastic Elastomers”, Rubber Chem. Technol., 65, 932–955 (1992b) 10.5254/1.3538652Search in Google Scholar
Forest, C., Chaumont, P., Cassagnau, P., Swoboda, B. and Sonntag, P., “Polymer Nano-Foams for Insulating Applications Prepared from CO2 Foaming”, Prog. Polym. Sci., 41, 122–145 (2015) 10.1016/j.progpolymsci.2014.07.001Search in Google Scholar
Garg, A., Gulari, E. and Manke, C. W., “Thermodynamics of Polymer Melts Swollen with Supercritical Gases”, Macromolecules, 27, 5643–5653 (1994) 10.1021/ma00098a019Search in Google Scholar
Garois, N., Sonntag, P., Hong, S., Martin, G. and Galpin, D., E.P. Patent 2380933 A1 (2011)Search in Google Scholar
Garois, N., Sonntag, P., Hong, S., Martin, G. and Galpin, D., U.S. Patent 8648145 B2 (2014)Search in Google Scholar
Gessler, A. M., Haslett, J. W. H., U.S. Patent 3037954A (1962)Search in Google Scholar
Goettlier, L. A., Richwine, J. R. and Wille, F. J., “The Rheology and Processing of Olefin-Based Thermoplastic Vulcanizates”, Rubber Chem. Technol., 55, 1448–1463 (1982) 10.5254/1.3535941Search in Google Scholar
Goharpey, F., Nazockdast, H. and Katbab, A. A., “Relationship between the Rheology and Morphology of Dynamically Vulcanized Thermoplastic Elastomers Based on EPDM/PP”, Polym. Eng. Sci., 45, 84–94 (2005) 10.1002/pen.20232Search in Google Scholar
Gornowicz, G. A., Lupton, K. E., Romenesko, D. J., Struble, K. and Zhang, H., U.S. Patent 6013715A (2000)Search in Google Scholar
Guo, Q., Wang, J., Park, C. B. and Ohshima, M., “A Microcellular Foaming Simulation System with a High Pressure-Drop Rate”, Ind. Eng. Chem. Res., 45, 6153–6161 (2006) 10.1021/ie060105wSearch in Google Scholar
Han, C. D., Kim, Y. W. and Malhotra, K. D., “A Study of Foam Extrusion Using a Chemical Blowing Agent”, J. Appl. Polym. Sci., 20, 1583–1595 (1976) 10.1002/app.1976.070200615Search in Google Scholar
Kear, K. E.: Developments in Thermoplastic Elastomers, Rapra Publishing, Shrewsbury (2003)Search in Google Scholar
Kim, S. G., Park, C. B. and Sain, M., “Foamability of Thermoplastic Vulcanizates Blown with Various Physical Blowing Agents”, J. Cell. Plast., 44, 53–67 (2008) 10.1177/0021955X07079224Search in Google Scholar
Kropp, D., Michaeli, W., Herrmann, T. and Schröder, O., “Foam Extrusion of Thermoplastic Elastomers Using CO2 as Blowing Agent”, J. Cell. Plast., 34, 304–311 (1998) 10.1177/0021955X9803400402Search in Google Scholar
Kumar, V., Suh, N. P., “A Process for Making Microcellular Thermoplastic Parts”, Polym. Eng. Sci., 30, 1323–1329 (1990) 10.1002/pen.760302010Search in Google Scholar
Laguna-Gutierrez, E., Saiz-Arroyo, C., Velasco, J. I. and Rodriguez-Perez, M. A., “Low Density Polyethylene/Silica Nanocomposite Foams. Relationship between Chemical Composition, Particle Dispersion, Cellular Structure and Physical Properties”, Eur. Polym. J., 81, 173–185 (2016) 10.1016/j.eurpolymj.2016.06.001Search in Google Scholar
Lee, S. T., Park, C. B.: Foam Extrusion: Principles and Pratices, CRC Press, London, New York (2000) 10.1201/9781420014129Search in Google Scholar
Li, Q., Matuana, L. M., “Foam Extrusion of High Density Polyethylene/Wood-Flour Composites Using Chemical Foaming Agents”, J. Appl. Polym. Sci., 88, 3139–3150 (2003) 10.1002/app.12003Search in Google Scholar
Lopez, L. M., Cosgrove, A. B., Hernandez-Ortiz, J. P. and Osswald, T. A., “Modeling the Vulcanization Reaction of Silicone Rubber”, Polym. Eng. Sci., 47, 675–683 (2007) 10.1002/pen.20698Search in Google Scholar
Mani, S., Cassagnau, P., Bousmina, M. and Chaumont, P., “Morphology Development in Novel Composition of Thermoplastic Vulcanizates Based on PA12/PDMS Reactive Blends”, Macromol. Mater. Eng., 296, 909–920 (2011) 10.1002/mame.201000406Search in Google Scholar
Michaeli, W.: Extrusion Dies for Plastics and Rubber, Hanser, Munich (1983)Search in Google Scholar
Peiti, C., Haudin, J.-M. and Vergnes, B., “Modification of Rheological Properties of Branched Polyethylenes by a Thermomechanical Treatment”, AIP Conference Proceedings, 1664, 170002 (2015) 10.1063/1.4918520Search in Google Scholar
Pesneau, I., Champagne, M., Gendron, R. and Huneault, M., “Foam Extrusion of PP–EMA Reactive Blends”, J. Cell. Plast., 38, 421–440 (2002) 10.1177/0021955X02038005165Search in Google Scholar
Prakashan, K., Gupta, A. K. and Maiti, S. N., “Effect of Compatibilizer on Micromehanical Deformations and Morphology of Dispersion in PP/PDMS Blend”, J. Appl. Polym. Sci., 105, 2858–2867 (2007) 10.1002/app.26510Search in Google Scholar
Royer, J. R., DeSimone, J. M. and Khan, S. A., “High-Pressure Rheology and Viscoelastic Scaling Predictions of Polymer Melts Containing Liquid and Supercritical Carbon Dioxide”, J. Polym. Sci., Part B: Polym. Phys., 39, 3055–3066 (2001) 10.1002/polb.10057Search in Google Scholar
Sahnoune, A., “Foaming of Thermoplastic Elastomers with Water”, J. Cell. Plast., 37, 149–159 (2001) 10.1106/E7WD-X288-XFK7-6E90Search in Google Scholar
Sato, Y., Masuoka, H., Takishima, S. and Takikawa, T., “Solubilities and Diffusion Coefficients of Carbon Dioxide and Nitrogen in Polypropylene, High-Density Polyethylene, and Polystyrene under High Pressures and Temperatures”, Fluid Phase Equilib., 162, 261–276 (1999) 10.1016/S0378-3812(99)00217-4Search in Google Scholar
Sato, Y., Takikawa, T., Yamane, M., Takishima, S. and Masuoka, H., “Solubility of Carbon Dioxide in PPO and PPO/PS Blends”, Fluid Phase Equilib., 194–197, 847–858 (2002) 10.1016/S0378-3812(01)00687-2Search in Google Scholar
Shah, V. M., Hardy, B. J. and Stern, S. A., “Solubility of Carbon Dioxide, Methane, and Propane in Silicone Polymers: Effect of Polymer Side Chains”, J. Polym. Sci., Part B: Polym. Phys., 24, 2033–2047 (1986) 10.1002/polb.1986.090240910Search in Google Scholar
Spitael, P., Macosko, C.W., and Sahnoune, A., “Extensional Rheology of Polypropylene and its Effect on Foaming of Thermoplastic Elastomers”, SPE ANTEC Tech. Papers (2002)Search in Google Scholar
Stange, J., Münstedt, H., “Rheological Properties and Foaming Behavior of Polypropylenes with Different Molecular Structures”, J. Rheol., 50, 907–923 (2006) 10.1122/1.2351880Search in Google Scholar
Stern, S. A., Shah, V. M. and Hardy, B. J., “Structure-Permeability Relationships in Silicone Polymers”, J. Polym. Sci., Part B: Polym. Phys., 25, 1263–1298 (1987) 10.1002/polb.1987.090250607Search in Google Scholar
Tanaka, H., White, J. L., “Experimental Investigations of Shear and Elongational Flow Properties of Polystyrene Melts Reinforced with Calcium Carbonate, Titanium Dioxide, and Carbon Black”, Polym. Eng. Sci., 20, 949–956 (1980) 10.1002/pen.760201406Search in Google Scholar
Utracki, L. A., Sammut, P., “On the Uniaxial Extensional Flow of Polystyrene/Polyethylene Blends”, Polym. Eng. Sci., 30, 1019–1026 (1990) 10.1002/pen.760301705Search in Google Scholar
Van Krevelen, D. W., Te Nijenhuis, K., “Chapter 3 Interfacial Energy Properties”, in Properties of Polymers, Elsevier, Amsterdam, p. 229–244 (2009) 10.1016/B978-0-08-054819-7.00008-XSearch in Google Scholar
Wang, M., Ma, J., Chu, R., Park, C. B. and Nanqiao, Z., “Effect of the Introduction of Polydimethylsiloxane on the Foaming Behavior of Block-Copolymerized Polypropylene”, J. Appl. Polym. Sci., 123, 2726–2732 (2012) 10.1002/app.34854Search in Google Scholar
Wang, W., Zhou, S., Xin, Z., Shi, Y. and Zhao, S., “Polydimethylsiloxane Assisted Supercritical CO2 Foaming Behavior of High Melt Strength Polypropylene Grafted with Styrene”, Front. Chem. Sci. Eng., 10, 396–404 (2016) 10.1007/s11705-016-1577-zSearch in Google Scholar
Wu, S., “Calculation of Interfacial Tension in Polymer Systems”, J. Polym. Sci. Polym. Symp., 34, 19–30 (1971) 10.1002/polc.5070340105Search in Google Scholar
Yamaguchi, M., Miyata, H., “Strain Hardening Behavior in Elongational Viscosity for Binary Blends of Linear Polymer and Crosslinked Polymer”, Polym. J., 32, 164–170 (2000) 10.1295/polymj.32.164Search in Google Scholar
Zhang, H., “Scale-Up of Extrusion Foaming Process for Manufacture of Polystyrene Foams Using Carbon Dioxide”, Phd Dissertation, University of Toronto, Toronto (2010)Search in Google Scholar
© 2019, Carl Hanser Verlag, Munich