Skip to content
BY 4.0 license Open Access Published by De Gruyter August 1, 2019

Influence of Post-Treatment Media on Morphological Changes in Transient Macromolecules of Polymeric Fibers

  • S. Baseri


There is a growing literature investigating the effects of thermal annealing and green solvent exposure on the microstructural changes, in general, and transient structures in polyester fibers, in particular, using such techniques as birefringence, differential scanning calorimetry, X-ray diffraction, and dynamic mechanical analysis. The results obtained from these studies consistently indicate that transient structures in polyester fibers strongly depend on the medium used so that treatment in different media produces important changes such as the transformation of the intermediate domain into an amorphous or crystalline region. Compared to polyester samples annealed at high temperatures over long treatment times, those exposed to green solvents yield higher values of crystallinity, orientation, density, transient structure, crystallite size in lateral directions, and elastic modulus but lower values of fractional free volume. Being environmentally friendly, green solvents may, thus, be considered as superior replacements for the conventional materials used in thermal annealing, especially because they change the fine structure of polyester fibers over shorter treatment times and at lower temperatures.

*Correspondence address, Mail address: Somayeh Baseri, Department of Textile Design and Printing, Semnan University, P. O. Box 57111-35351, Semnan, Iran, E-mail:


Abou-Kandil, A. I., Windle, A. H., “The Development of Microstructure in Oriented Polyethylene Terephthalate (PET) during Annealing”, Polymer, 48, 50695079 (2007) 10.1016/j.polymer.2007.06.042Search in Google Scholar

Ammayappan, L., Das, S., Guruprasad, R., Ray, D. P., and Ganguly, P. K., “Effect of Lac Treatment on Mechanical Properties of Jute Fabric/Polyester Resin Based Biocomposite”, Indian J. Fiber. Text. Res., 41, 312317 (2016)Search in Google Scholar

Bai, C., Spontak, R. J., Koch, C. C., Saw, C. K. and Balik, C. M., “Structural Changes in Poly(ethylene terephthalate) Induced by Mechanical Milling”, Polymer, 41, 71477157 (2000) 10.1016/S0032-3861(00)00048-3Search in Google Scholar

Bartolotta, A., Marco, G. D., Farsaci, F., Lanza, M., and Pieruccini, M., “DSC and DMTA Study of Annealed Cold-Drawn PET: A Three Phase Model Interpretation”, Polymer, 44, 57715777 (2003) 10.1016/S0032-3861(03)00589-5Search in Google Scholar

Baseri, S., “Effect of Drawing Temperature on the Structure and Free Volume of Semicrystalline Polyester Fibers”, Polym. Eng. Sci., 55, 20302041 (2015) 10.1002/pen.24045Search in Google Scholar

Baseri, S., Karimi, M. and Morshed, M., “Study of Structural Changes and Mesomorphic Transitions of Oriented Poly(ethylene terephthalate) Fibers in Supercritical CO2”, Eur. Polym. J., 48, 811820 (2012) 10.1016/j.eurpolymj.2012.01.017Search in Google Scholar

Baseri, S., Karimi, M. and Morshed, M., “Effects of Tension on Mesomorphic Transitions and Mechanical Properties of Oriented Poly(ethylene terephthalate) Fibers under Supercritical CO2 Exposure”, Polym. Bull., 70, 953969 (2013) 10.1007/s00289-012-0899-3Search in Google Scholar

Bonart, V. R., “Parakristalline Strukturen in Polyäthyleneterephtalat (PET)”, Kolloid Z. Z. Polym., 213, 12 (1966)10.1007/BF01552509Search in Google Scholar

Canetti, M., Bertini, F., “Crystalline and Supermolecular Structure of Poly(ethylene terephthalate) during Isothermal Crystallization and Annealing Treatment by Means of Wide and Small Angle X-Ray Investigations”, Eur. Polym. J., 46, 270276 (2010) 10.1016/j.eurpolymj.2009.10.019Search in Google Scholar

Chidambaram, D., Venkatraj, R., and Manisankar, P., “Solvent-Induced Modifications in Polyester Fibers. II. Structural and Thermal Behavior”, J. Appl. Polym. Sci., 89, 15551565 (2003) 10.1002/app.12286Search in Google Scholar

Cristea, M., Ionita, D., and Simionescu, B. C., “A New Insight in the Dynamo-Mechanical Behavior of Poly(ethylene terephthalate)”, Eur. Polym. J., 46, 20052012 (2010) 10.1016/j.eurpolymj.2010.08.008Search in Google Scholar

Di Lorenzo, M. L., Androsch, R., Stolte, I. and Righetti, M. C., “The Three-Phase Structure of Random Butene-1/Ethylene Copolymers”, Int. Polym. Proc., 31, 647654 (2016) 10.3139/217.3248Search in Google Scholar

Gedde, U. W.: Polymer Physics, 2nd Edition, Chapman & Hall, London (1996)Search in Google Scholar

Geil, P. H.: Structure Development and Mechanical Behavior during Unaxial Drawing of PET, in Handbook of Thermoplastic Polyesters, Wiley-VCH, Weinheim (2002)Search in Google Scholar

Hsu, C. L., Turng, L. S., Osswald, T. A., Rudolph, N., Dougherty, E. and Gorton, P., “Effects of Pressure and Supercritical Fluid on Melt Viscosity of LDPE in Conventional and Microcellular Injection Molding”, Int. Polym. Proc., 27, 1824 (2012) 10.3139/217.2493Search in Google Scholar

Kakudo, M., Kasai, N.: X-Ray Diffraction by Polymers, 2nd Edition, Elsevier Publishing Company, New York (1972)Search in Google Scholar

Kattan, M., Dargent, E. and Grenet, J., “Three Phase Model in Drawn Thermoplastic Polyesters: Comparison of Different Scanning Calorimetry and Thermally Stimulated Depolarization Current Experiments”, Polymer, 43, 13991405 (2002) 10.1016/S0032-3861(01)00719-4Search in Google Scholar

Kawakami, D., Hsiao, S., Burger, C., Ran, S. and Avila-Orta, C., “Deformation – Induced Phase Transition and Superstructure Formation in Poly(ethylene terephthalate)”, Macromolecules, 38, 91103 (2005) 10.1021/ma049333xSearch in Google Scholar

Kayaisang, S., Amornsakchai, T. and Saikrasun, S., “Potential Utilization of Recycled PET in Comparison with Liquid Crystalline Polymer as an Additive For HDPE Based Composite Fibers: Comparative Investigation on Mechanical Performance of Cross-Ply Laminates”, J. Polym. Eng., 33, 793802 (2013) 10.1515/polyeng-2013-0155Search in Google Scholar

Kazarian, S. G., Vincent, M. F., Bright, F. V., Liotta, C. L., and Eckert, C. A., “Specific Intermolecular Interaction of Carbon Dioxide with Polymers”, J. Am. Chem. Soc., 118, 17291736 (1996) 10.1021/ja950416qSearch in Google Scholar

Keum, J. K., Jeon, H. J., Song, H. H., Choi, J. I., and Son, Y. K., “Orientation-Induced Crystallization of Poly (ethylene terephthalate) Fibers with Controlled Microstructure”, Polymer, 49, 48824888 (2008) 10.1016/j.polymer.2008.08.050Search in Google Scholar

Keum, J. K., Kim, J., Lee, S. M., Song, H. H., Son, Y. K., Choi, J. I., and Im, S. S., “Crystallization and Transient Mesophase Structure in Cold Drawn PET Fibers”, Macromolecules, 36, 98739878 (2003) 10.1021/ma034694iSearch in Google Scholar

Klug, P. H., Alexander, L. E.: X-Ray Diffraction Procedures, 1st Edition, Wiley-VCH, New York (1974)Search in Google Scholar

Li, Y., Pan, C., Xin, Z., Zhou, S., Meng, X., and Zhao, S., “Rheological, Crystallization and Foaming Behaviors of High Melt Strength Polypropylene in the Presence of Polyvinyl Acetate”, J. Polym. Res., 25, 4654 (2018) 10.1007/s10965-018-1439-0Search in Google Scholar

Li, Z., Liu, Y., Nie, M. and Wang, Q., “Self-Assembly Behavior of Aryl Amide Nucleating Agent under Supercritical Carbon Dioxide and its Influence on Polypropylene”, Polym. Plast. Technol., 56, 19371941 (2017) 10.1080/03602559.2017.1298792Search in Google Scholar

Liu, R. Y. F., Schiraldi, D. A., Hiltner, A. and Baer, E., “Effect of Cold Drawing on Oxygen-Barrier Properties of Polyesters”, SPE ANTEC Tech. Papers, 3225–3229 (2003)Search in Google Scholar

Lyu, M. Y., “Effect of Annealing Conditions on Thermal Properties and Crystallization Behavior of Poly(ethylene terephthalate)”, Int. Polym. Proc., 25, 118124 (2010) 10.3139/217.2290Search in Google Scholar

Mahendrasingam, A., Blundell, D. J., Wright, A. K., Urban, V., Narayanan, T. and Fuller, W., “Observations of Structure Development during Crystallisation of Oriented Poly(ethylene terephthalate)”, Polymer, 44, 59155925 (2003) 10.1016/S0032-3861(03)00542-1Search in Google Scholar

Mahendrasingam, A., Martin, C., Fuller, W., Blundell, D. J., Oldman, R. J., Mackerron, D. H., Harvie, J. L. and Riekel, C., “Observation of a Transient Structure Prior to Strain-Induced Crystallization in Poly(ethylene terephthalate)”, Polymer, 41, 12171221 (2000) 10.1016/S0032-3861(99)00461-9Search in Google Scholar

Odian, G.: Principles of Polymerization, 4th Edition, Wiley-Interscience, New York (2004) 10.1002/047147875XSearch in Google Scholar

Parravicini, L., Leone, B., Auriemma, F., Guerra, G., Petraccone, V., Dino, G. D., Bianchi, R. and Vosa, R., “Crystallization of Poly(ethylene terephthalate) (PET) from the Oriented Mesomorphic Form”, J. Appl. Polym. Sci., 52, 875885 (1994) 10.1002/app.1994.070520706Search in Google Scholar

Pieruccini, M., Flores, A., Nochel, U., Marco, G. D., Stribeck, N. and Calleja, F. J. B., “The Role of the Amorphous Phase in the Re-Crystallization Process of Cold-Crystallized Poly(ethylene terephthalate)”, Eur. Phys. J. E., 27, 365373 (2008) PMid:19015903; 10.1140/epje/i2008-10389-0Search in Google Scholar PubMed

Ran, S., Wang, Z., Burger, C., Chu, B. and Hsiao, B. S., “Mesophase as the Precursor for Strain-Induced Crystallization in Amorphous Poly(ethylene terephthalate) Film”, Macromolecules, 35, 1010210107 (2002) 10.1021/ma021252iSearch in Google Scholar

Ressia, J., Quinzani, L., Valles, E., Bello, P. and Bello, A., “Effect of the Thermal History on the Thermal and Rheological Behavior of a Thermotropic Polyester”, Mol. Cryst. Liq. Cryst., 420, 933 (2004) 10.1080/15421400490487416Search in Google Scholar

Sfiligoj, M. S., Zipper, P., “The Influence of Different Treatment Media on the Structure of PET Fibers”, Mater. Res. Innovations, 6, 5564 (2002) 10.1007/s10019-002-0173-7Search in Google Scholar

Shabana, H. M., “The Structure and Properties of Thermally Treated Polyester Films”, International Journal of Polymeric Materials and Polymeric Biomaterials, 54, 10471058 (2005) 10.1080/009140390894067Search in Google Scholar

Sirota, E. B., “Polymer Crystallization: Metastable Mesophases and Morphology”, Macromolecules, 40, 10431048 (2007) 10.1021/ma0615147Search in Google Scholar

Sperling, L. H.: Introduction to Physical Polymer Science, 4th Edition, Wiley Interscience, New York (2006)Search in Google Scholar

Srivastava, S., Das, C., “Study of Compatibilized Liquid Crystalline Polymer/Cyclic Olefin Copolymer Blends”, Polym. Plast. Technol., 57, 302319 (2018) 10.1080/03602559.2017.1326136Search in Google Scholar

Watanabe, H., Kudoh, Y. and Takahashi, T., “Transient Response Characteristics of LCs with Fiber Grid Structures Assembled within the Cell Bulk”, Mol. Cryst. Liq. Cryst., 646, 147153 (2017) 10.1080/15421406.2017.1285130Search in Google Scholar

Wolff, F., Zirkel, L., Betzold, S., Jakob, M., Maier, V., Nachtrab, F., Ceron Nicolat, B., Fey, T. and Münstedt, H., “Using Supercritical Carbon Dioxide for Physical Foaming of Advanced Polymer Materials”, Int. Polym. Proc., 26, 437443 (2011) 10.3139/217.2469Search in Google Scholar

Wunderlich, B.: Thermal Analysis of Polymeric Materials, 3rd Edition, Springer, New York (2005)Search in Google Scholar

Yeh, S. K., Chen, Y. R., Kang, T. W., Tseng, T. J., Peng, S. P., Chu, C. C., Rwei, S. P., and Guo, W. J., “Different Approaches for Creating Nanocellular TPU Foams by Supercritical CO2 Foaming”, J. Polym. Res., 25, 3042 (2018) 10.1007/s10965-017-1419-9Search in Google Scholar

Received: 2018-12-10
Accepted: 2019-02-10
Published Online: 2019-08-01
Published in Print: 2019-08-13

© 2019, Carl Hanser Verlag, Munich

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 29.3.2023 from
Scroll Up Arrow