Skip to content
BY 4.0 license Open Access Published by De Gruyter August 1, 2019

Influence of Rubber Ratio and Crosslinking Agent on Mechanical Properties, Crystallization and Rheological Behaviors of EPDM/PP Thermoplastic Elastomer

D.-H. Xu , Y. Zhou , W.-D. He , H.-M. Wu and J. Yu

Abstract

The ethylene-propylene-diene monomer/polypropylene (EPDM/PP) thermoplastic elastomer is prepared by dynamic vulcanization. The effects of different rubber ratios and crosslinking agent contents on the static and dynamic mechanical properties, crystallization and rheological behaviors are investigated and discussed. EPDM/PP with the rubber ratio from 40 to 50 % and crosslinking agent content of 1.2 wt% has the highest tensile strength and elongation at break. The fracture morphologies indicate that EPDM/PP with high rubber ratios and crosslinker contents is over vulcanized to harden, which results in that some large particles cannot be fragmented by shear force. The crystallinity obtained from differential scanning calorimetry (DSC) shows a decrease with increasing rubber ratio and a very slight variation with increasing the crosslinking content. The dynamic mechanical analysis (DMA) results display a decrease trend in storage modulus and tan δ with increasing crosslinking density. The rheological behaviors show that the complex viscosity also increases with increasing crosslinking density, indicating that the elastic deformation becomes superior to viscous flow in EPDM/PP.


*Correspondence address, Mail address: Jie Yu, The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, PRC, E-mail:

References

Antunes, C. F., Duin, M. V. and Machado, A. V., “Morphology and Phase Inversion of EPDM/PP Blends – Effect of Viscosity and Elasticity”, Polym. Test., 30, 90791 (2011) 10.1016/j.polymertesting.2011.08.013Search in Google Scholar

Cao, L., Zheng, A., Cao, X., Yuan, D., Xu, C. and Chen, Y., “Morphology and Non-Isothermal Crystallization of Dynamically Vulcanized PP/EPDM Blends in situ Compatibilized via Magnesium Dimethacrylate”, Polym. Test., 62, 6878 (2017) 10.1016/j.polymertesting.2017.06.014Search in Google Scholar

Chen, Y., Xu, C., Cao, L. and Cao, X., “Highly Toughened Polypropylene/Ethylene–Propylene-Diene Monomer/Zinc Dimethacrylate Ternary Blends Prepared via Peroxide-Induced Dynamic Vulcanization”, Mater. Chem. Phys., 138, 6371 (2013) 10.1016/j.matchemphys.2012.10.034Search in Google Scholar

Coran, A. Y., Patel, R., “Rubber-Thermoplastic Compositions. Part I. EPDM-Polypropylene Thermoplastic Vulcanizates”, Rubber Chem. Technol., 53, 141150 (1980) 10.5254/1.3535023Search in Google Scholar

Costa, H. M. D., Ramos, V. D. and Oliveira, M. G. D., “Degradation of Polypropylene (PP) during Multiple Extrusions: Thermal Analysis, Mechanical Properties and Analysis of Variance”, Polym. Test., 26, 676684 (2007) 10.1016/j.polymertesting.2007.04.003Search in Google Scholar

Drobny, J. G., “Chapter 6 Thermoplastic Elastomers Prepared by Dynamic Vulcanization”, in Handbook of Thermoplastic Elastomers, Elsevier, New York, p. 325328 (2007) 10.1016/B978-081551549-4.50007-4Search in Google Scholar

Holden, G., “Chapter 5 Applications of Thermoplastic Elastomers”, in Applied Plastics Engineering Handbook, Elsevier, New York, p. 91107 (2017) PMid:27814946; 10.1002/polc.5070260104Search in Google Scholar

George, W., “EPDM Ethylene-Propylene Diene Terpolymer”, in Handbook of Polymers, ChemTec. Publishing, Florida, p. 122125 (2016) 10.1016/B978-081551549-4.50007-4Search in Google Scholar

Gupta, N. K., Nagpal, A. K. and Jain, A. K., “Dynamically Vulcanized Blends of Polypropylene (PP) and Ethylene Propylene Diene (EPDM) Rubber-A Toughening Mechanism”, J. Polym. Mater., 17, 393410 (2000)Search in Google Scholar

Hu, X., Kang, H., Li, Y., Geng, Y., Wang, R. and Zhang, L., “Preparation, Morphology and Superior Performances of Biobased Thermoplastic Elastomer by in situ, Dynamical Vulcanization for 3D-Printed Materials”, Polymer, 108, 1120 (2002) 10.1016/j.polymer.2016.11.045Search in Google Scholar

Huang, H., Zhou, R. and Yang, C., “Fiber Orientation Propelled by High-Pressure Water Penetration in Water-Assisted Injection Molded Fiber-Reinforced Thermoplastics Part”, Compos. Mater., 47, 183190 (2013) 10.1177/0021998312438083Search in Google Scholar

Katbab, A. A., Nazockdast, H. and Bazgir, S., “Carbon Black-Reinforced Dynamically Cured EPDM/PP Thermoplastic Elastomers. I. Morphology, Rheology, and Dynamic Mechanical Properties”, J. Appl. Polym. Sci., 75, 11271137(2015) 10.1002/(SICI)1097-4628(20000228)75:9<1127::AID-APP5>3.0.CO;2-2Search in Google Scholar

Jung, H. Y., Jhon, M. S., “Partial Miscibility in Multicomponent Polymer System”, J. Polym. Sci., Part A: Polym. Chem., 22, 567576 (2010) 10.1002/pol.1984.170220305Search in Google Scholar

Khan, M. A., Kumar, S. S., Raghu, T. S., Kotresh, T. M. and Sailaja, R. R. N., “Commingled Nanocomposites of LDPE/PP/Nylon 6/EPDM Reinforced with MWCNT and Kenaf Fiber with Enhanced Mechanical, Thermal and Flammability Characteristics”, Mater. Today Commun., 4, 5062 (2015) 10.1016/j.mtcomm.2015.04.008Search in Google Scholar

Lee, C., Wei, X. D., Kysar, J. W. and Hone, J., “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”, Science, 321, 385388 (2008) PMid:18635798; 10.1126/science.1157996Search in Google Scholar

Lima, P., Silva, S. P. M. D., Oliveira, J. and Costa, V., “Rheological Properties of Ground Tyre Rubber Based Thermoplastic Elastomeric Blends”, Polym. Test., 45, 5867 (2015) 10.1016/j.polymertesting.2015.05.006Search in Google Scholar

Lu, C., Yu, J., Wang, C., Wang, J. and Chu, F., “Fabrication of UV-Absorbent Cellulose-Rosin Based Thermoplastic Elastomer Via “Graft from ATRP”, Carbohydr. Polym., 188, 128135 (2018) PMid:29525148; 10.1016/j.carbpol.2018.01.062Search in Google Scholar

Ma, L. F., Bao, R. Y., Dou, R., Zheng, S. D., Liu, Z. Y., Zhang, R. Y., Yang, M. and Yang, W., “Conductive Thermoplastic Vulcanizates (TPVs) Based on Polypropylene (PP)/Ethylene-Propylene-Diene Rubber (EPDM) Blend: From Strain Sensor to Highly Stretchable Conductor”, Compos. Sci. Technol., 128, 176184 (2016) 10.1016/j.compscitech.2016.04.001Search in Google Scholar

Mali, M., Marathe, A. and Mhaske, S., “Influence of (Methacryloxymethyl) Methyldimethoxysilane on DCP Cured EPDM/PP Thermoplastic Vulcanizates”, J. Vinyl Add. Tech., 24, 304313 (2018) 10.1002/vnl.21605Search in Google Scholar

Martin, G., Barres, C., Sonntag, P., Garois, N. and Cassagnau, P., “Morphology Development in Thermoplastic Vulcanizates (TPV): Dispersion Mechanisms of a Pre-Crosslinked EPDM Phase”, Eur. Polym. J., 45, 32573268 (2009) 10.1016/j.eurpolymj.2009.07.012Search in Google Scholar

Mazidi, M. M., Aghjeh, M. K. R., “Effects of Blend Composition and Compatibilization on the Melt Rheology and Phase Morphology of Binary and Ternary PP/PA6/EPDM Blends”, Polym. Bull., 72, 19752000 (2015) 10.1007/s00289-015-1384-6Search in Google Scholar

Müller, G., Rieger, B., “Propene Based Thermoplastic Elastomers by Early and Late Transition Metal Catalysis”, Prog. Polym. Sci., 27, 815851 (2002) 10.1016/s0079-6700(01)00030-2Search in Google Scholar

Naskar, K., Gohs, U. and Heinrich, G., “Influence of Molecular Structure of Blend Components on the Performance of Thermoplastic Vulcanisates Prepared by Electron Induced Reactive Processing”, Polymer, 91, 203210 (2016) 10.1016/j.polymer.2016.03.070Search in Google Scholar

Naskar, K., Kokot, D. and Noordermeer, J. W. M., “Influence of Various Stabilizers on Ageing of Dicumyl Peroxide-Cured Polypropylene/Ethylene-Propylene-Diene Thermoplastic Vulcanizates”, Polym. Degrad. Stab., 85, 831839 (2004) 10.1016/j.polymdegradstab.2004.03.016Search in Google Scholar

Parenteau, T., Bertevas, E., Ausias, G., Stocek, R., Grohens, Y. and Pilvin, P., “Characterisation and Micromechanical Modelling of the Elasto-Viscoplastic Behavior of Thermoplastic Elastomers”, Mech. Mater., 71, 114125 (2014) 10.1016/j.mechmat.2013.06.010Search in Google Scholar

Prut, E. V., Solomatin, D. V. and Kuznetsova, O. P., “Rheological Behaviors of Blends Based on Polypropylene and EPDM Rubber Powder”, Mendeleev Commun., 27, 318320 (2017) 10.1016/j.mencom.2017.05.035Search in Google Scholar

Salih, H. Y., Huseyin, U., Abdullah, M. and Fehim, F., “Influence of Process Parameters on the Mechanical and Foaming Properties of PP Polymer and PP/Talc/EPDM Composites”, Polym. Plast. Technol. Eng., 52, 433439 (2013) 10.1080/03602559.2012.748802Search in Google Scholar

Uthaipan, N., Jarnthong, M., Zheng, P., Junhasavasdikul, B., Nakason, C. and Thitithammawonga, A., “Effects of Cooling Rates on Crystallization Behavior and Melting Characteristics of Isotactic Polypropylene as Neat and in the TPVs EPDM/PP and EOC/PP”, Polym. Test., 44, 101111 (2015) 10.1016/j.polymertesting.2015.04.002Search in Google Scholar

Winters, R., Lugtenburg, J., Litvinov, V. M., Duin, M. V. and Groot, H. J. M. D., “Solid State 13 C NMR Spectroscopy on EPDM/PP/Oil Based Thermoplastic Vulcanizates in the Melt”, Polymer, 42, 97459752 (2001) 10.1016/S0032-3861(01)00504-3Search in Google Scholar

Wong, E. W., Sheehan, P. E. and Lieber, C. M., “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes”, Science, 277, 19711975 (1997) 10.1126/science.277.5334.197Search in Google Scholar

Zhao, Y., Liu, Z., Su, B., Chen, F., Fu, Q., Ning, N. and MingT., “Property Enhancement of PP-EPDM Thermoplastic Vulcanizates via Shear-Induced Break-Up of Nano-Rubber Aggregates and Molecular Orientation of the Matrix”, Polymer, 63, 170178 (2015) 10.1016/j.polymer.2016.11.045Search in Google Scholar

Received: 2019-03-18
Accepted: 2019-04-18
Published Online: 2019-08-01
Published in Print: 2019-08-13

© 2019, Carl Hanser Verlag, Munich

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 1.2.2023 from https://www.degruyter.com/document/doi/10.3139/217.3817/html
Scroll Up Arrow