Accessible Requires Authentication Published by De Gruyter April 9, 2020

Effect of a Novel Chemical Treatment on the Physico-Thermal Properties of Sugarcane Nanocellulose Fiber Reinforced Epoxy Nanocomposites

H. Mohit and V. Arul Mozhi Selvan

Abstract

In the present investigation, a novel chemical treatment was introduced for the extraction of nanocellulose fibers from sugarcane bagasse and applied as reinforcement material to enhance the physical properties and thermal stability of epoxy nanocomposites. Epoxy nanocomposites with different weight fractions were fabricated using a wet layup process followed by furnace heating to remove the residual moisture content. The influence of surface modified sugarcane nanocellulose fiber loading on morphological (transmission electron microscope) properties of epoxy nanocomposites was investigated. The porosity and water absorption increase with the increment in fiber weight fraction for both treated and untreated nanocellulose fiber-epoxy composites. Among the various treatment processes, the alkali-treated fibers reinforced epoxy composites showed better thermal stability and water absorption resistance under 10 wt.% of nanocellulose fiber reinforcement.


Mail address: V. Arul Mozhi Selvan, Department of Mechanical Engineering, National Institute of Technology, NH 83, Thuvakudi, Tiruchirappalli 620015, Tamilnadu, India, E-mail:

References

1 Alemdar, A., Sain, M., “Isolation and Characterization of Nanofibers from Agricultural Residues – Wheat Straw and Soy Hulls”, Bioresour. Technol., 99, 16641671 (2008) 10.1016/j.biortech.2007.04.029 Search in Google Scholar

2 Asagekar, S. D., Joshi, V. K., “Characteristics of Sugarcane Fibers”, Indian. J. Fiber. Tex. Res., 39, 180184 (2014), http://nopr.niscair.res.in/bitstream/123456789/28916/1/IJFTR%2039%282%29%20180-184.pdf Search in Google Scholar

3 Azwa, Z. N., Yousif, B.F., “Characteristics of Kenaf Fibre/Epoxy Composites Subjected to Thermal Degradation”, Polym. Degrad. Stab., 98, 27522759 (2013) 10.1016/j.polymdegradstab.2013.10.008 Search in Google Scholar

4 Bledzki, A. K., Franciszczak, P., Osman, Z. and Elbadwai, M., “Polypropylene Biocomposites Reinforced with Softwood, Abaca, Jute, and Kenaf Fibers”, Ind. Crops. Prod., 70, 9199 (2015) 10.1016/j.indcrop.2015.03.013 Search in Google Scholar

5 Bledzki, A. K., Jaszkiewicz, A., UrbaniakM. and Stankowska-Walczak, D., “Biocomposites in the Past and in the Future”, Fibers. Tex. East. Eur., 20, 1522 (2012), http://fibtex.lodz.pl/pliki/Fibtex_(Eslxw46my0n3ut5l).pdf Search in Google Scholar

6 Chan, M. I., Lau, K. T., Wong, T. T. and Cardona, F., “Interfacial Bonding Characteristic of Nanoclay/Polymer Composites”, Appl. Surf. Sci., 258, 860864 (2011) 10.1016/j.apsusc.2011.09.016 Search in Google Scholar

7 Chirayil, C. J., Joy, I., Mathew, L., Koetz, J. and Thomas, S., “Nanofibril Reinforced Unsaturated Polyester Nanocomposites: Morphology, Mechanical and Barrier Properties, Viscoelastic Behavior and Polymer Chain Confinement”, Ind. Crops. Prod., 56, 246254 (2014) 10.1016/j.indcrop.2014.03.005 Search in Google Scholar

8 Das, S., Sara, A. K., Choudhary, P. K., Basak, R. K., Mitra, R. C., Todd, T., Lang, S. and Rowell, R. M.Effect of Steam Pretreatment of Jute Fiber on Dimensional Stability of Jute Composite”, J. Appl. Polym. Sci., 76, 16521661 (2000) 10.1002/(sici)1097-4628(20000613)76:11<1652::aid-app6>3.0.co;2-x Search in Google Scholar

9 Dhakal, H. N., Sarasini, F., Santuli, C., Tirillo, J., Zhang, Z. and Arumugam, V., “Effect of Basalt Fiber Hybridization on Post-Impact Mechanical Behavior of Hemp Fiber Reinforced Composites”, Composites Part A, 75, 5467 (2015) 10.1016/j.compositesa.2015.04.020 Search in Google Scholar

10 Dzalto, J., Medina, L. and Mitschang, P., “Volumetric Interaction and Material Characterization of Flax/Furan Bio-Composites”, Int. J. Adv. Sci. Technol., 7, 1121 (2014) 10.14416/j.ijast.2014.01.004 Search in Google Scholar

11 Faruk, O., Bledzki, A. K., Fink, H. P. and Sain, M., “Biocomposites Reinforced with Natural Fibers: 2000–2010”, Prog. Polym. Sci., 37, 15521596 (2012) 10.1016/j.progpolymsci.2012.04.003 Search in Google Scholar

12 Fazeli, M., Florez, J. P. and Simao, R. A., “Improvement in Adhesion of Cellulose Fibers to the Thermoplastic Starch Matrix by Plasma Treatment Modification”, Composites Part B, 163, 207216 (2019) 10.1016/j.compositesb.2018.11.048 Search in Google Scholar

13 Frone, A. N., Nicolae, C. A., Gabor, R. A. and Panaitescu, D. M., “Thermal Properties of Water-Resistant Starch-Polyvinyl Alcohol Films Modified with Cellulose Nanofibers”, Polym. Degrad. Stab., 121, 385397 (2015) 10.1016/j.polymdegradstab.2015.10.010 Search in Google Scholar

14 Gan, P. G., Sam, S. T., Abdullah, M. F. B. and Omar, M. F., “Thermal Properties of Nanocellulose-Reinforced Composites: A Review”, J. Appl. Polym. Sci., 137, 48544:114 (2020) 10.1002/app.48544 Search in Google Scholar

15 Gao, Y., Xu, J., Zhang, Y., Yu, Q., Yuan, Z. and Liu, Y., “Effects of Different Pretreatment Methods on Chemical Composition of Sugarcane Bagasse and Enzymatic Hydrolysis”, Bioresour. Technol., 144, 396400 (2013) 10.1016/j.biortech.2013.06.036 Search in Google Scholar

16 Huang, L., Wu, Q., Wang, Q., Ou, R. and Wolcott, M., “Solvent-Free Pulverization and Surface Fatty Acylation of Pulp Fiber for Property-Enhanced Cellulose/Polypropylene Composites”, J. Clean. Prod., 244, 118811 (2020) 10.1016/j.jclepro.2019.118811 Search in Google Scholar

17 Huang, R., Xiong, W., Xu, X. and Wu, Q., “Thermal Expansion Behavior of Co-Extruded Wood-Plastic Composites with Glass Fiber Reinforced Shells”, Bioresources., 7, 55145526 (2012) 10.15376/biores.7.4.5514-5526 Search in Google Scholar

18 Huang, R., Zhang, Y., Xu, X., Zhou, D. and Wu, Q., “Effect of Hybrid Mineral and Bamboo Fillers on Thermal Expansion Behavior of Bamboo Fiber and Recycled Polypropylene-Polyethylene Composites”, Bioresources., 7, 45634574 (2012) 10.15376/biores.7.4.4563-4574 Search in Google Scholar

19 Jannah, M., Mariatti, M. and Bakkar, A. A., “Effect of Chemical Surface Modifications on the Properties of Woven Banana-Reinforced Unsaturated Polyester Composites”, J. Reinf. Plast. Compos., 28, 15191351 (2009) 10.1177/0731684408090366 Search in Google Scholar

20 Jasmani, L., AdnanS., “Preparation and Characterization of Nanocrystalline Cellulose from Acacia Mangium and Its Reinforcement Potential”, Carbohydr. Polym., 161, 166171 (2017) 10.1016/j.carbpol.2016.12.061 Search in Google Scholar

21 Jumaidin, R., Sapuan, S. M., Jawaid, M., Ishak, M. R. and Sahari, J., “Characteristics of Thermoplastic Sugar Palm Starch/Agar Blend: Thermal, Tensile and Physical Properties”, Int. J. Biol. Macromolecules, 89, 575581 (2016) 10.1016/j.ijbiomac.2016.05.028 Search in Google Scholar

22 Kian, L. K., Saba, N., Jawaid, M. and Sultan, M. T. H., “A Review on Processing Techniques of Bast Fibers Nanocellulose and Its Polylactic Acid (PLA) Nanocomposites”, Int. J. Biol. Macromolecule, 121, 13141328 (2019) 10.1016/j.ijbiomac.2018.09.040 Search in Google Scholar

23 Kim, T. H., Kim, J. S., Sunwoo, C. and Lee, Y. Y.Pretreatment of Corn Stover by Aqueous Ammonia”, Bioresour. Technol., 90, 3947 (2003) 10.1016/S0960-8524(03)00097-x Search in Google Scholar

24 Layoine, N., Desloges, I., Dufresne, A. and BrasJ., “Microfibrillated Cellulose – Its Barrier Properties and Applications in Cellulosic Materials: A Review”, Carbohydr. Polym.90, 735764 (2012) 10.1016/j.carbpol.2012.05.026 Search in Google Scholar

25 Lee, K. Y., Tammelin, T., Schulfter, K., Kiisikinen, H., Samela, J. and Bismarck, A., “High Performance Cellulose Nanocomposites: Comparing the Reinforcing Ability of Bacterial Cellulose and Nanofibrillated Cellulose”, Am. Chem. Soc. Appl. Mater. Interfaces., 4, 40784086 (2012)PMid:22839594; 10.1021/am300852a Search in Google Scholar

26 Luo, H., Xiong, G., Ma, C., Chang, P., Yao, F., Zhu, Y., Zhang, C. and WanY., “Mechanical and Thermos-Mechanical Behaviors of Sizing-Treated Corn Fiber/Polylactide Composites”, Polym. Test., 39, 4552 (2014) 10.1016/j.polymertesting.2014.07.014 Search in Google Scholar

27 Madsen, B., Thygsen, A. and Lilholt, H., “Plant Fibre Composites – Porosity and Volumetric Interaction”, Compos. Sci. Technol., 67, 15841600 (2007) 10.1016/j.compscitech.2006.07.009 Search in Google Scholar

28 Mandal, A., Chakrabarty, D., “Studies on Mechanical, Thermal, Morphological and Barrier Properties of Nanocomposites Based on Poly(vinyl alcohol) and Nanocellulose from Sugarcane Bagasse”, J. Ind. Eng. Chem., 20, 462473 (2014) 10.1016/j.jiec.2013.05.003 Search in Google Scholar

29 Mohit, H., Arul Mozhi Selvan, V., “A Comprehensive Review on Surface Modification, Structure Interface and Bonding Mechanism of Plant Cellulose Fiber Reinforced Polymer Based Composites”, Compos. Interfaces., 25, 629667 (2018) 10.1080/09276440.2018.1444832 Search in Google Scholar

30 Mohit, H., Arul Mozhi Selvan, V., “Thermo-Mechanical Properties of Sodium Chloride and Alkali-Treated Sugarcane Bagasse Fiber”, Indian. J. Fiber. Tex. Res., 44, 286293 (2019a), http://nopr.niscair.res.in/bitstream/123456789/50554/1/IJFTR%2044%283%29%20286-293.pdf Search in Google Scholar

31 Mohit, H., Arul Mozhi Selvan, V., “Physical and Thermomechanical Characterization of the Novel Aluminum Silicon Carbide-Reinforced Polymer Nanocomposites”, Iranian. Polym. J., 28, 823837 (2019b) 10.1007/S13726-019-00746-y Search in Google Scholar

32 Mohit, H., Arul Mzhi Selvan, V., “Effect of a Novel Chemical Treatment on Nanocellulose Fibers for Enhancement of Mechanical, Electrochemical and Tribological Characteristics of Epoxy Bio-Nanocomposites”, Fiber. Polym., 20, 19181944 (2019c) 10.1007/s12221-019-1224-7 Search in Google Scholar

33 Mukherjee, T., Czaka, M., Kao, N., Gupta, R. K., Choi, H. J. and Bhattacharya, S., “Dispersion Study of Nanofibrillated Cellulose Based Poly(butylene adipate-co-terephthalate) Composites”, Carbohydr. Polym., 102, 537542 (2014) 10.1016/J.Carbpol.2013.11.047 Search in Google Scholar

34 Oliveira, F. B., Bras, J., Pimenta, M. T. B., Curvelo, A. A. S. and Belgacem, M. N., “Production of Cellulose Nanocrystals from Sugarcane Bagasse Fibers and Pith”, Ind. Crops. Prod., 93, 4857 (2016) 10.1016/j.indcrop.2016.04.064 Search in Google Scholar

35 Prathapan, R., Thapa, R., Garnier, G. and Tabor, R. F., “Modulating the Zeta Potential of Cellulose Nanocrystals Using Salts and Surfactants”, Colloids”, Surf. A Physicochem. Eng. Asp., 509, 1118 (2016) 10.1016/j.colsurfa.2016.08.075 Search in Google Scholar

36 Ramlee, N. A., Jawaid, M., Zainudin, E. S. and Yamani, S. A. K., “Modification of Oil Palm Empty Fruit Bunch and Sugarcane Bagasse Biomass as Potential Reinforcement for Composites Panel and Thermal Insulation Materials”, J. Bionic. Eng., 16, 175188 (2019) 10.1007/S42235-019-0016-5 Search in Google Scholar

37 Saba, N., Jawaid, M., “A Review on Thermomechanical Properties of Polymers and Fibers Reinforced Polymer Composites”, J. Ind. Eng. Chem., 67, 111 (2018) 10.1016/j.jiec.2018.06.018 Search in Google Scholar

38 Saba, N., Mohammad, F., Pervaiz, M., Jawaid, M., Alothman, O. Y. and Sain, M., “Mechanical, Morphological and Structural Properties of Cellulose Nanofibers Reinforced Epoxy Composites”, Int. J. Biol. Macromolecules., 97, 190200 (2017a) 10.1016/j.ijbiomac.2017.01.029 Search in Google Scholar

39 Saba, N., Paridah, M. T., Abdan, K. and Ibrahim, N. A., “Preparation and Characterization of Fire Retardant Nano-Filler from Oil Palm Empty Fruit Bunch Fibers”, Bioresources., 10, 45304543 (2015) 10.15376/biores.10.3.4530-4543 Search in Google Scholar

40 Saba, N., Paridah, M. T., Abdan, K. and Ibrhim, N. A., “Fabrication of Epoxy Nanocomposites from Oil Palm Nano Filler: Mechanical and Morphological Properties”, Bioresources., 11, 77217736 (2016) 10.15376/biores.11.3.7721-7736 Search in Google Scholar

41 Saba, N., Safwan, A., Sanyang, M. L., Mohammad, F., Pervaiz, Jawaid, M., Alothman, O. Y. and Sain, M., “Thermal and Dynamic Mechanical Properties of Cellulose Nanofibers Reinforced Epoxy Composites”, Int. J. Bio. Macromolecules, 102, 822828 (2017b) 10.1016/j.ijbiomac.2017.04.074 Search in Google Scholar

42 Sen, A. K., Kumar, S., “Coir-Fiber-Based Fire Retardant Nano Filler for Epoxy Composites”, J. Therm. Anal. Calori., 101, 265271 (2010) 10.1007/s10973-009-0637-8 Search in Google Scholar

43 Sever, K., Sarikanat, M., Seki, Y., Erkan, G., Erdogan, U. H. and Erden, S.Surface Treatments of Jute Fabric: The Influence of Surface Characteristics on Jute Fabrics and Mechanical Properties of Jute/Polyester Composites”, Ind. Crops. Prod., 35, 2230 (2012) 10.1016/j.indcrop.2011.05.020 Search in Google Scholar

44 Shrestha, S., Chowdhary, R. A., Toomey, M. D., Betancourt, D., Montes, F. and Youngblood, J. P., “Surface Hydrophobization of TEMPO-Oxidized Cellulose Nanofibrils (CNFs) Using a Facile, Aqueous Modification Process and Its Effect on Properties of Epoxy Nanocomposites”, Cellulose., 26, 96319643 (2019) 10.1007/S10570-019-02762-w Search in Google Scholar

45 Silva, R. V., Spinelli, D., Filho, W. W. B., Neto, S. C., Chierice, G. O. and Tarpani, J. R., “Fracture Toughness of Natural Fibers/Castor Oil Polyurethane Composites”, Compos. Sci. Technol., 66, 13281335 (2006) 10.1016/j.compscitech.2005.10.012 Search in Google Scholar

46 Singh, S., Mohanty, A. K. and Misra, M., “Hybrid Bio-Composite from Talc, Wood Fiber and Bioplastic: Fabrication and Characterization”, Composites Part A, 41, 304312 (2010) 10.1016/j.compositesa.2009.10.022 Search in Google Scholar

47 Sun, T., Fan, H., Wang, Z., Liu, X. and Wu, Z., “Modified Nano-Fe2O3 – Epoxy Composite with Enhanced Mechanical Properties”, Mater. Des., 87, 1016 (2015) 10.1016/j.matdes.2015.07.177 Search in Google Scholar

48 Syafri, E., Kasim, A., Abral, H. and AbsenA., “Cellulose Nanofibers Isolation and Characterization from Ramie Using a Chemical-Ultrasonic Treatment”, 16, 11451155 (2019) 10.1080/15440478.2018.1455073 Search in Google Scholar

49 Ten, E., Jiang, L. and Wolcott, M. P., “Preparation and Properties of Aligned Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Cellulose Nanowhiskers Composites”, Carbohydr. Polym.92, 206213 (2013) 10.1016/j.carbpol.2012.09.033 Search in Google Scholar

50 Wu, G., Liu, D., Liu, G., Chen, J., Huo, S. and Kong, Z., “Thermoset Nanocomposites from Waterborne Bio-Based Epoxy Resin and Cellulose Nanowhiskers”, Carbohydr. Polym., 127, 229235 (2015) 10.1016/j.carbpol.2015.03.078 Search in Google Scholar

51 Wu, Q., Chi, K., Wu, Y. and LeeS., “Mechanical, Thermal Expansion and Flammability Properties of Co-Extruded Wood Polymer Composites with Basalt Fiber Reinforced Shells”, Mater. Des., 60, 334342 (2014) 10.1016/J.Matdes.2014.04.010 Search in Google Scholar

52 Xu, S., Girouard, N., Schueneman, G., Shofner, M. L. and Meredith, J. C., “Mechanical and Thermal Properties of Waterborne Epoxy Composites Containing Nanocrystals”, Polymer, 54, 65896598 (2013) 10.1016/j.polymer.2013.10.011 Search in Google Scholar

53 Zhan, M., Wool, R. P., “Mechanical Properties of Composites with Chicken Feathers and Glass Fibers”, J. Appl. Polym. Sci., 133, 27 (2016) 10.1002/app.44013 Search in Google Scholar

Received: 2019-06-19
Accepted: 2020-01-16
Published Online: 2020-04-09
Published in Print: 2020-04-29

© 2020, Carl Hanser Verlag, Munich