Accessible Requires Authentication Published by De Gruyter June 22, 2020

Study of Mechanical and Moisture Absorption Behavior of Epoxy/Cloisite-15A Nanocomposites Processed Using Twin Screw Extruder

G. Angadi, H. N. N. Murthy, R. Sridhar, S. Firdosh and T. S. Roopa


This paper presents the effect of process parameters of twin screw extruder and addition of Cloisite-15A on mechanical, thermal and moisture barrier properties of epoxy/Cloisite-15A nanocomposites. Four lobed kneading blocks were used the in shearing zone of the extruder, based on their effectiveness in dispersing nanofillers in epoxy. Screw speeds from 100 min−1 to 400 min−1, number of passes up to 15, temperature from 5°C to 80°C and Cloisite-15A contents from 1 wt.% to 2.5 wt.% were considered for designing the L12 Orthogonal Array. Improvements in tensile strength, compression strength, flexural strength, impact strength, hardness and moisture diffusivity in the nanocomposites were 11.89%, 20.06%, 27.73%, 37.26%, 25.48% and 56.22% respectively, when compared to neat epoxy. The improvements were achieved for screw speed of 400 min–1, 5 passes through the extruder, processing temperature of 5°C and 2 wt.% of Cloisite-15A. Dispersion of Cloisite-15A in epoxy was studied by XRD, SEM and TEM. Thermal stability and moisture barrier properties were superior in the nanocomposites.

*Correspondence address, Mail address: H. N. Narasimha Murthy, Department of Mechanical Engineering RV College of Engineering, Bangalore-560059, Karnataka, India, E-mail:


1 Achmad, C., Mujtahid, K., Saeed, A. Z. and Mansour, N. A. O., “Rheological and Mechanical Properties of Polypropylene/Calcium Carbonate Nanocomposites Prepared from Masterbatch”, J. Thermoplast. Compos., 29, 593622 (2014) 10.1177/0892705714530747 Search in Google Scholar

2 Alfred, T. N., Mahesh, H., Eldon, T. and Shaik, J., “Effects of Surface Treatments of Montmorillonite Nanoclay on Cure Behavior of Diglycidyl Ether of Bisphenol A Epoxy Resin”, J. Nanosci. (2013) 10.1155/2013/864141 Search in Google Scholar

3 Alsteens, B., Vincent, L. and Avalosse, T., “Parametric Study of the Mixing Efficiency in a Kneading Block Section of a Twin-screw Extruder”, Int. Polym. Proc., 19, 207217 (2004) 10.3139/217.1836 Search in Google Scholar

4 Antonio, F. A., David, T. S. M., “Modeling Nanoclay Effects into Laminates Failure Strength and Porosity”, Compos. Struct., 87, 5562 (2009) 10.1016/j.compstruct.2007.12.009 Search in Google Scholar

5 Apoorva, P. S., Rakesh, G., Hota, V. S. G. and Clois, P., “Moisture Diffusion through Vinyl Ester Nanocomposites Made with Montmorillonite Clay”, Polym. Eng. Sci., 42, 18521863 (2002) 10.1002/pen.11078 Search in Google Scholar

6 Asghar, H. K., Mohammad, R. B., Shu, J. C., George, P. S., Xiao, L. Z. and Wen, H. D., “Optimizing the Degree of Carbon Nanotube Dispersion in a Solvent for Producing Reinforced Epoxy Matrices”, Powder Technol.284, 541550 (2015). 10.1016/j.powtec.2015.07.023 Search in Google Scholar

7 Asma, Y., Jandro, L. A. and Isaac, M. D., “Processing of Clay/Epoxy Nanocomposites by Shear Mixing”, Scr. Mater., 49, 8186 (2003) 10.1016/S1359-6462(03)00173-8 Search in Google Scholar

8 Asmussen, E., Peutzfeldt, A., “Influence of UEDMA, BisGMA and TEGDMA on Selected Mechanical Properties of Experimental Resin Composites”, Dent. Mater., 14, 5156 (1998) 10.1016/S0109-5641(98)00009-8 Search in Google Scholar

9 Becker, O., Russell, V. and George, P. S., “Thermal Stability and Water Uptake of High Performance Epoxy Layered Silicate Nanocomposites”, Eur. Polym. J., 40, 187195 (2004) 10.1016/j.eurpolymj.2003.09.008 Search in Google Scholar

10 Bindu, S. T. K., Ayswarya, E. P., Beena, T. A., Sabura, B. P.M. and Thomas, T. E., “Fabrication of Partially Exfoliated and Disordered Intercalated Cloisite Epoxy Nanocomposites via in situ Polymerization: Mechanical, Dynamic Mechanical, Thermal and Barrier Properties”, Appl. Clay Sci., 102, 220230 (2014) 10.1016/j.clay.2014.09.043 Search in Google Scholar

11 Bowen, T., Noreen, L. T., “A Review of the Water Barrier Properties of Polymer/Clay and Polymer/Graphene Nanocomposites”, J. Membrane Sci., 514, 595612 (2016) 10.1016/j.memsci.2016.05.026 Search in Google Scholar

12 Bravo, V. L., Hrymak, A. N. and WrightJ. D., “Study of Particle Trajectories, Residence Times and Flow Behavior in Kneading Discs of Intermeshing Co-Rotating Twin-Screw Extruders”, Polym. Eng. Sci., 44, 779793 (2004) 10.1002/pen.20070 Search in Google Scholar

13 Byung, C. K., Sang, W. P. and Lee, D., “Fracture Toughness of the Nano-Particle Reinforced Epoxy Composite”, Compos. Struct., 86, 6977 (2008) 10.1016/j.compstruct.2008.03.005 Search in Google Scholar

14 Charles, A. W., Sergey, V., “Estimating Realistic Confidence Intervals for the Activation Energy Determined from Thermoanalytical Measurements”, Anal. Chem., 72, 31713175 (2000) 10939383 10.1021/ac000210u Search in Google Scholar

15 Charlie, M., “Twin Screw Extruders as Continuous Mixers for Thermal Processing: A Technical and Historical Perspective”, AAPS J. Pharm. Sci. Tech., 17, 319 (2016) 26883259 10.1208/s12249-016-0485-3 Search in Google Scholar

16 Chun, K. L., Kin, T. L., Hoi, Y. C. and Hang, Y. L., “Effect of Ultrasound Sonication in Nanoclay Clusters of Nanoclay/Epoxy Composites”, Mater. Lett., 59, 13691372 (2005) 10.1016/j.matlet.2004.12.048 Search in Google Scholar

17 Chun, L. W., Mingqiu, Z., Min, Z. R. and Klaus, F., “Tensile Performance Improvement of Low Nanoparticles Filled Polypropylene Composites”, Compos. Sci. Technol.62, 13271340 (2002) 10.1016/s0266-3538(02)00079-9 Search in Google Scholar

18 Cristina, T., Jose, C., Thomas, S. and Antonio, G. C., “Hybrid Algorithms for the Twin–Screw Extrusion Configuration Problem”, Appl. Soft Comput., 23, 298307 (2014) 10.1016/j.asoc.2014.06.022 Search in Google Scholar

19 Dazhu, C., Pingsheng, H., “Monitoring the Curing Process of Epoxy Resin Nanocomposites Based on Organo-Montmorillonite – A New Application of Resin Cure Meter”, Compos. Sci. Technol., 64, 25012507 (2004) 10.1016/j.compscitech.2004.05.008  Search in Google Scholar

20 Dejan, D., Peter, K., “Impact of Screw Elements on Continuous Granulation with a Twin-Screw Extruder”, J. Pharm. Sci., 97, 49344942 (2008) 10.1002/jps.21339 Search in Google Scholar

21 Emin, M. A., Karbstein, H. P., “Analysis of the Dispersive Mixing Efficiency in a Twin-Screw Extrusion Processing of Starch Based Matrix”, J. Food Eng., 115, 132143 (2013) 10.1016/j.jfoodeng.2012.10.008 Search in Google Scholar

22 Fuli, Z., Dan, Y., Ruiwei, G., Liandong, D., Anjie, D. and Jianhua, Z., “Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications”, Nanomaterials, 5, 20542130 (2015) 28347111 10.3390/nano5042054 Search in Google Scholar

23 Gangadhar, A., Narasimha Murthy, H. N., Sridhar, R., Raghavendra, N. and SalimF., “Simulation of Epoxy/Cloisite-15A Multifunctional Nanocomposites using Twin Screw Extruders”, Mater. Today Proc., 5(10), 2112721134, (2018) 10.1016/j.matpr.2018.06.509 Search in Google Scholar

24 Gangadhar, A., Narasimha Murthy, H. N., Sridhar, R., SalimF., Raghavendra, N. and Krishna, M., “Effect of Screw Configuration on the Dispersion of Nanofillers in Thermoset PolymersJ. Polym. Eng., 37(8), 815825 (2017) 10.1515/polyeng-2015-0427 Search in Google Scholar

25 Giorgos, G., Nektaria, M. B. and AlkiviadisS. P., “Effect of Dispersion Conditions on the Thermo-Mechanical and Toughness Properties of Multi Walled Carbon Nanotubes-Reinforced Epoxy”, Composites Part B, 43, 26972705 (2012) 10.1016/j.compositesb.2012.01.070 Search in Google Scholar

26 Hai, J. L., Guo, Z. L., Xiao, Y. M., Bao, Y. Z. and Xiang, B. C., “Epoxy/Clay Nanocomposites: Further Exfoliation of Newly Modified Clay Induced by Shearing Force of Ball Milling”, Polym. Int., 53, 15451553 (2004) 10.1002/pi.1596 Search in Google Scholar

27 Haipan, S., Yu, D., Ian, J. D. and Pramanik, A., “The Effects of Material Formulation and Manufacturing Process on Mechanical and Thermal Properties of Epoxy/Clay Nanocomposites”, Int. J. Adv. Manuf. Technol., 87, 19992012 (2016) 10.1007/s00170-016-8572-x Search in Google Scholar

28 Hatem, A., Low, I. M., “Effect of Water Absorption on the Mechanical Properties of Nanoclay Filled Recycled Cellulose Fibre Reinforced Epoxy Hybrid Nanocomposites”, Composites Part A, 44, 2331 (2013) 10.1016/j.compositesa.2012.08.026 Search in Google Scholar

29 Hongbo, G., Chao, M., Junwei, G., Jiang, G., Xingru, Y., Jiangnan, H., Qiuyu, Z. and Zhanhu, G., “An Overview of Multifunctional Epoxy Nanocomposites”, J. Mater. Chem. C, 4, 58905906 (2016) 10.1039/C6TC01210H Search in Google Scholar

30 Hongxia, Z., Robert, K. Y. L., “Effect of Water Absorption on the Mechanical and Dielectric Properties of Nano-Alumina Filled Epoxy Nanocomposites”, Key Eng. Mater., 39, 602611 (2008) 10.1016/j.compositesa.2007.07.006 Search in Google Scholar

31 Jamaluddin, M., Aidah, J., Constantinos, S. and Nurulnatisya, A., “Compressive Properties of Nanoclay/Epoxy Nanocomposites”, Procedia Eng., 41, 16071613 (2012) 10.1016/j.proeng.2012.07.357 Search in Google Scholar

32 Jane, M. F. P., Sergio, M. and Rezende, M. C., “Evaluation of Mechanical Properties of Four Different Carbon/Epoxy Composites Used in Aeronautical Field”, Mater. Res., 8, 9197 (2005). 10.1590/s1516-14392005000100016 Search in Google Scholar

33 Jang, K. K., Chugang, H., Ricky, S. C. W. and Man, L. S., “Moisture Barrier Characteristics of Organoclay–Epoxy Nanocomposites”, Compos. Sci. Technol., 65, 805813 (2005) 10.1016/j.compscitech.2004.10.014 Search in Google Scholar

34 Jayita, B., Suprakas, S. R., Manfred, S. and James Wesley, S., “A Combined Experimental and Theoretical Approach to Establish the Relationship between Shear Force and Clay Platelet Delamination in Melt-Processed Polypropylene Nanocomposites”, Polym., 55, 22332245 (2014) 10.1016/j.polymer.2014.03.014 Search in Google Scholar

35 Jeffrey, W. G., “Flammability and Thermal Stability Studies of Polymer Layered-Silicate (Clay) Nanocomposites”, Appl. Clay Sci., 15, 3149 (1999) 10.1016/s0169-1317(99)00019-8 Search in Google Scholar

36 Jinwei, W., Shuchao, Q., “Study on the Thermal and Mechanical Properties of Epoxy–Nanoclay Composites: The Effect of Ultrasonic Stirring Time”, Mater. Lett., 61, 42224224 (2007) 10.1016/j.matlet.2007.01.058 Search in Google Scholar

37 Karthik Babu, N. B., Ramesh, T., “Enhancement of Thermal and Mechanical Properties of Novel Micro-Wear Debris Reinforced Epoxy Composites”, Mater. Res. Express, 6, 105358 (2019) 10.1088/2053-1591/ab404f Search in Google Scholar

38 Karthik Babu, N. B., Muthukumaran, S., Ramesh, T. and Arokiasamy, S., “Effect of Agro-Waste Microcoir Pith and Nanoalumina Reinforcement on Thermal Degradation and Dynamic Mechanical Behavior of Polyester Composites”, J. Nat. Fibers, (2019) 10.1080/15440478.2019.1636745 Search in Google Scholar

39 Kerstin, M., Elodie, B., Marcos, L., Maria, J. B., Yolanda, E. S., Jose, M. L., Oliver, M., Alvise, B., Steve, H., Uwe, B., Germán, P., Marius, J., Martina, L., Zuzana, S., Sara, C. and Markus, S., “Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and their Applications in the Packaging, Automotive and Solar Energy Fields”, Nanomaterials7, 147 (2017) 28362331 10.3390/nano7040074 Search in Google Scholar

40 Khaliq, M., Mohammad, J., Azman, H., Aznizam, A. B., Abdul, K. H. P. S., Arshad, A. S. and Inuwa, I., “Potential Materials for Food Packaging from Nanoclay/Natural Fibres Filled Hybrid Composites”, Mater. Des.46, 391410 (2012) 10.1016/j.matdes.2012.10.044 Search in Google Scholar

41 Kim, D. H., Kim, H. S., “Investigation of Hygroscopic and Mechanical Properties of Nanoclay/Epoxy System: Molecular Dynamics Simulations and Experiments”, Compos. Sci. Technol., 101, 110120 (2014) 10.1016/j.compscitech.2014.06.026 Search in Google Scholar

42 Kornmann, X., Henrik, L. and Berglund, L. A., “Synthesis of Epoxy–Clay Nanocomposites. Influence of the Nature of the Curing Agent on Structure”, Polymer, 42, 44934499 (2001) 10.1016/s0032-3861(00)00801-6 Search in Google Scholar

43 Lakshmi, N. S., Rakesh, G. and Mohit, B., “Barrier Properties of Polymer Nanocomposites”, Ind. Eng. Chem. Res., 45, 82828289 (2006) 10.1021/ie0510223 Search in Google Scholar

44 Li, H., Thompson, M. R. and O'Donnell, K. P., “Understanding Wet Granulation in the Kneading Block of Twin Screw Extruders”, Chem. Eng. Sci., 113, 1121 (2014) 10.1016/j.ces.2014.03.007 Search in Google Scholar

45 Liu, J., Boo, W. J., Clearfield, A. and Sue, H. J., “Intercalation and Exfoliation: A Review on Morphology of Polymer Nanocomposites Reinforced by Inorganic Layer Structures”, Mater. Manuf. Process., 21, 143151 (2006) 10.1080/amp-200068646 Search in Google Scholar

46 Mahmood, S., Amir, R. K. and Chitsazzadeh, M., “Fabrication and Mechanical Properties of Clay/Epoxy Nanocomposite and its Polymer Concrete”, Mater. Des., 40, 443452 (2012) 10.1016/j.matdes.2012.03.008 Search in Google Scholar

47 Michael, A., Philippe, D., “Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials”, Mater. Sci. Eng., 28, 163 (2000) 10.1016/S0927-796x(00)00012-7 Search in Google Scholar

48 Mirzadeh, A., Lafleur, P. G., Kamal, M. R. and Dubois, C., “The Effects of Nanoclay Dispersion Levels and Processing Parameters on the Dynamic Vulcanization of TPV Nanocomposites Based on PP/EPDM Prepared by Reactive Extrusion”, Polym. Eng. Sci., 52, 10991110 (2012) 10.1002/pen.22178 Search in Google Scholar

49 Mohammad, A., Ahmed, A. and Uttandaraman, S., “Silane Functionalization of Sodium Montmorillonite Nanoclay and its Effect on Rheological and Mechanical Properties of HDPE/Clay Nanocomposites”, Appl. Clay Sci., 146, 439448 (2017) 10.1016/j.clay.2017.06.035 Search in Google Scholar

50 Mohan, T. P., Kanny, K., “Water Barrier Properties of Nanoclay Filled Sisal Fibre Reinforced Epoxy Composites”, Composites Part A, 42, 385393 (2011) 10.1016/j.compositesa.2010.12.010 Search in Google Scholar

51 Moinuddin, M., Dilhan, K. and Golba, J. C., “Simulation of Co-Rotating Twin Screw Extrusion Process Subject to Pressure-Dependent Wall Slip at Barrel and Screw Surfaces: 3D FEM Analysis for Combinations of Forward- and Reverse-Conveying Screw Elements”, Int. Polym. Proc., 29, 5162 (2014) 10.3139/217.2802    Search in Google Scholar

52 Mo-Lin, C., Kin-Tak, L., Tsun-Tat, W., Mei-Po, H. and David, H., “Mechanism of Reinforcement in a Nanoclay/Polymer Composite”, Composites Part B, 42, 17081712 (2011) 10.1016/j.compositesb.2011.03.011 Search in Google Scholar

53 Monika, S., Grazyna, S. M. and Karla, B., “Effect of Nanofillers Dispersion in Polymer Matrices: A Review”, Sci. Adv. Mater., 3, 125 (2010) 10.1166/sam.2011.1136 Search in Google Scholar

54 Olesja, S., Samuel, T. B., Mannov, E., Schulte, K. and Andrey, N. A., “Water Transport in Epoxy/MWCNT Composites”, Eur. Polym. J., 49, 21382148 (2013) 10.1016/j.eurpolymj.2013.05.010 Search in Google Scholar

55 Omid, Z., Mojtaba, A., Saeid, N., Karthik, C. P. and Minoo, N., “A Technical Review on Epoxy-Clay Nanocomposites: Structure, Properties, and their Applications in Fiber Reinforced Composites”, Composites Part B, 135, 124 (2017) 10.1016/j.compositesb.2017.09.066 Search in Google Scholar

56 Phillip, B. M., Emmanuel, G., “Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites”, Chem. Mater., 6, 17191725 (1994) 10.1021/cm00046a026 Search in Google Scholar

57 Potente, H., Ansahl, J. and Klarholz, B., “Design of Tightly Intermeshing Co-Rotating Twin Screw Extruders”, Int. Polym. Proc.9, 1125 (1994) 10.3139/217.940011 Search in Google Scholar

58 Qi, B., Zhang, Q. X., Bannister, M. and Mai, Y. W., “Investigation of the Mechanical Properties of DGEBA-Based Epoxy Resin with Nanoclay Additives”, Compos. Struct., 75, 514519 (2006) 10.1016/j.compstruct.2006.04.032 Search in Google Scholar

59 Qinghua, Z., Aibing, Y., Max, L. and Paul, D. R., “Clay-Based Polymer Nanocomposites: Research and Commercial Development”, J. Nanosci. Nanotechnol., 5, 15741592 (2005) 16245517 10.1166/jnn.2005.411 Search in Google Scholar

60 Quang, T. N., Don, B., “Preparation of Polymer – Clay Nanocomposites and their Properties”, Adv. Polym. Technol., 25, 270285 (2006) 10.1002/adv.20079 Search in Google Scholar

61 Rajashekar, K., Surendranathan, A. O., Kori, S. A., Nirbhay, S., Rameshkumar, A.V. and Sourabh, S., “Defence Applications of Polymer Nanocomposites”, Defence Sci. J., 60, 551563 (2010) 10.14429/dsj.60.578 Search in Google Scholar

62 Roy, K. R.: A Primer on the Taguchi Method, Society of Manufacturing Engineers, Birmingham, UK (2010) Search in Google Scholar

63 Sajjad, D., Faramarz, A. G., Ismail, G. and Mohsen, A., “Predicting of Mechanical Properties of PP/LLDPE/TiO2 Nano-Composites by Response Surface Methodology”, Composites Part B, 84, 109120 (2016) 10.1016/j.compositesb.2015.08.075 Search in Google Scholar

64 Sajjad, M. S., Taher, A. and Samrand, R. A., “Investigation of the Effect of Nanoclay and Processing Parameters on the Tensile Strength and Hardness of Injection Molded Acrylonitrile Butadiene Styrene–Organoclay Nanocomposites”, Mater. Des., 58, 527534 (2014) 10.1016/j.matdes.2014.02.014 Search in Google Scholar

65 Salahuddin, N., “Layered Silicate/Epoxy Nanocomposites: Synthesis, Characterization and Properties”, Polym. Adv. Technol., 15, 251259 (2004) 10.1002/pat.382 Search in Google Scholar

66 Shaik, Z., Mahesh, H., Yuanxin, Z., Alfred, T. N., Ashok, K. and Shaik, J., “Experimental and Numerical Investigations on Flexural and Thermal Properties of Nanoclay–Epoxy Nanocomposites”, Mat. Sci. Eng., A., 527, 79207926 (2010) 10.1016/j.msea2010.08.078 Search in Google Scholar

67 Sridhar, R., Narasimhamurthy, H., Karthik, B., Vishnumahesh, K. R., Krishna, M., and RatnaP., “Moisture Diffusion through Nanoclay/Vinylester Processed Using Twin-Screw Extrusion”, J. Vinyl Add. Tech., 20, 152159 (2014) 10.1002/vnl.21367 Search in Google Scholar

68 Sridhar, R., Narasimhamurthy, H., Niranjan, P., Vishnumahesh, K. R. and Krishna, M., “Parametric Study of Twin Screw Extrusion for Dispersing MMT in Vinylester Using Orthogonal Array Technique and Grey Relational Analysis”, Composites Part B, 43, 599608 (2011) 10.1016/j.compositesb.2011.08.025 Search in Google Scholar

69 Sun, M. L., Wu, S. H., Gwo, G. L. and Trong, M. D., “Unusual Mechanical Properties of Melt-Blended Poly(lactic acid) (PLA)/Clay Nanocomposites”, Eur. Polym. J., 52, 193206 (2014) 10.1016/j.eurpolymj.2013.12.012 Search in Google Scholar

70 Sung, R. H., Kyong, Y. R., Hee, C. K. and Jeong, T. K., “Fracture Performance of Clay/Epoxy Nanocomposites with Clay Surface-Modified Using 3-Aminopropyltriethoxysilane”, Colloids Surf., A, 313, 112115 (2008) 10.1016/j.colsurfa.2007.04.082     Search in Google Scholar

71 Sung, R. H., Ryu, S. H., Park, S. J. and Kyong, Y. R., “Effect of Clay Surface Modification and Concentration on the Tensile Performance of Clay/Epoxy Nanocomposites”, Mat. Sci. Eng., A., 448264268 (2007) 10.1016/j.msea.2006.10.052 Search in Google Scholar

72 Suraj, C. Z., Sriraman, R. and Singh, R. P., “Effect of Processing Parameters and Clay Volume Fraction on the Mechanical Properties of Epoxy-Clay Nanocomposites”, J. Mater. Sci., 41, 22192228 (2006) 10.1007/s10853-006-7179-2 Search in Google Scholar

73 Swetha, C., Narumichi, S., Folke, J. T., Rolf, M., Bodo, F. and Schulte, K., “Fracture Toughness and Failure Mechanism of Graphene Based Epoxy Composites”, Compos. Sci. Technol., 97, 9099 (2014) 10.1016/j.compscitech.2014.03.014 Search in Google Scholar

74 Tatiana, G. K., Andrey, N. A., “Moisture Absorption by Epoxy/Montmorillonite Nanocomposite”, Compos. Sci. Technol., 69, 27112715 (2009) 10.1016/j.compscitech.2009.08.013 Search in Google Scholar

75 Timothy, V. D., “Applications of Nanotechnology in Food Packaging and Food Safety: Barrier Materials, Antimicrobials and Sensors”, J. Colloid Interface Sci., 361, 124 (2011) 10.1016/j.jcis.2011.07.017 Search in Google Scholar

76 Trystan, D., Disdier, E. P. and Vergnes, B., “Influence of Twin-Screw Processing Conditions on Structure and Properties of Polypropylene – Organoclay Nanocomposites”, Int. Polym. Proc., 27, 517526 (2012) 10.3139/217.2591 Search in Google Scholar

77 Uddin, F., Sun, C. T., “Effect of Nanoparticle Dispersion on Mechanical Behavior of Polymer Nanocomposites”, 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, USA (2009) 10.2514/6.2009-2333 Search in Google Scholar

78 Velmurugan, R., Mohan, T. P., “Room Temperature Processing of Epoxy-Clay Nanocomposites”, J. Mater. Sci., 39, 73337339 (2004) 10.1023/B:JMSC.0000048748.35490.9 Search in Google Scholar

79 Virgínia, S. S., Otávio, B., Martha, F. S. L. and Raquel, S. M., “Morphological, Thermomechanical and Thermal Behavior of Epoxy/MMT Nanocomposites”, J. Non-Cryst. Solids, 400, 5866 (2014) 10.1016/j.jnoncrysol.2014.05.003 Search in Google Scholar

80 Weiping, L., Hoa, S. V. and Martin, P., “Fracture Toughness and Water Uptake of High-Performance Epoxy/Nanoclay Nanocomposites”, Compos. Sci. Technol., 65, 23642373 (2005) 10.1016/j.compscitech.2005.06.007 Search in Google Scholar

81 Weiping, L., Hoa, S. V. and Martin, P., “Water Uptake of Epoxy–Clay Nanocomposites: Experiments and Model Validation”, Compos. Sci. Technol., 68, 20662072 (2008) 10.1016/j.compscitech.2007.07.024 Search in Google Scholar

82 Xiao, F. L., Kin, T. L. and Yan, S. Y., “Mechanical Properties of Epoxy-Based Composites Using Coiled Carbon Nanotubes”, Compos. Sci. Technol., 68, 28762881 (2008) 10.1016/j.compscitech.2007.10.019 Search in Google Scholar

83 Yasser, R., Hamed, M. A. and Salmankhani, A., “Optimization of Mechanical Properties of Epoxy-Based Hybrid Nanocomposite: Effect of Using Nano Silica and High-Impact Polystyrene by Mixture Design Approach”, Mater. Des., 56, 10681077 (2013) 10.1016/j.matdes.2013.11.060 Search in Google Scholar

84 Yusra, A., Yan, Z., Xiao, H., Tianjiao, B. and YanW., “Combined Effect of Graphene Oxide and MWCNTs on Microwave Absorbing Performance of Epoxy Composites”, Polym. Adv. Technol., 26, 620625 (2015) 10.1002/pat.3496 Search in Google Scholar

Received: 2019-08-10
Accepted: 2020-02-06
Published Online: 2020-06-22
Published in Print: 2020-07-03

© 2020, Carl Hanser Verlag, Munich