Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 9, 2020

High-Performance Natural Rubber/Graphene Composites from a Uniquely Designed Physical and Chemical Hybrid-Network

B.-L. Yu , L.-C. Jiang , K. Huang , X.-L. Liu , X.-M. Shao , Y.-P. Zhu , R. Cai , S. Zhao , J.-F. Wu and L. Li


It is well-known that strength and stiffness are commonly inversely related with toughness and ductility for organic filler filled elastomer nanocomposites. These performances are governed by the dispersion of organic fillers and interface of elastomer nanocomposites. Herein, the designed physical and chemical hybrid-network based on tannic acid (TA) as interface regulator and cross-link agent can endow graphene/elastomer nanocomposites with reinforcement as well as toughness simultaneously. The results indicate the formation of a strong and stable network structure composed of elastomer chains and graphene, contrary to traditional graphene/elastomer nanocomposites. The present composites with a physical and chemical hybrid-network effectively improve the load transfer and show excellent mechanical properties.

Mail address: Lin Li, Key Laboratory of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PRC, E-mail:


1 Chen, Z. X., Lu, H. B., “Constructing Sacrificial Bonds and Hidden Lengths for Ductile Graphene/Polyurethane Elastomers with Improved Strength and Toughness”, J. Mater. Chem., 22, 1239112922 (2012) 10.1039/c2jm30517 hSearch in Google Scholar

2 Colson, J. W., Woll, A. R., Mukherjee, A., Levendorf, M. P., Spitler, E. L., Shields, V. B., Spencer, M. G., Park, J. and Dichtel, W. R., “Oriented 2D Covalent Organic Framework Thin Films on Single-Layer Graphene”, Science, 332, 228231 (2011) 10.1126/science.1202747Search in Google Scholar

3 Cui, J., Song, Z. X., Xin, L. X., Zhao, S., Yan, Y. H. and Liu, G. Y., “Exfoliation of Graphite to Few-Layer Graphene in Aqueous Media with Vinylimidazole-Based Polymer as High-Performance Stabilizer”, Carbon, 99, 249260 (2016) 10.1016/j.carbon.2015.12.030Search in Google Scholar

4 Doufnoune, R., Haddaoui, N. J., “Effects of Surface Functionalized Partially Reduced Graphene Oxide and Different Compatibilizers on the Properties and Structure of PP/EPR Nanocomposites”, Polym. Res., 24, 138 (2017) 10.1007/s10965-017-1302-8Search in Google Scholar

5 Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., Hobza, P., Zboril, R. and Kim, K. S., “Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications”, Chem. Rev., 112, 61566214 (2012) 10.1021/cr3000412Search in Google Scholar

6 Hamed, G. R., “Reinforcement of Rubber”, Rubber Chem. Technol., 73, 524533 (2000) 10.5254/1.3547603Search in Google Scholar

7 Kim, H. J., Choi, Y. S., Lim, M. Y., Jung, K. H., Kim, D. G., Kim, J. J., Kang, H. and Lee, J. C., “Reverse Osmosis Nanocomposite Membranes Containing Graphene Oxides Coated by Tannic Acid with Chlorine-Tolerant and Antimicrobial Properties”, Journal Membr. Sci., 514, 2534 (2016) 10.1016/j.memsci.2016.04.026Search in Google Scholar

8 Kozhemyakina, N. V., Englert, J. M., Yang, G., Spiecker, E., Schmidt, C. D., Hauke, F. and Hirsch, A., “Non-Covalent Chemistry of Graphene: Electronic Communication with Dendronized Perylene Bisimides”, Adv. Mater., 22, 54835487 (2010) 10.1002/adma.201003206Search in Google Scholar

9 Lee, C. G., Wei, X. D., Kysar, J. W. and Hone, J., “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”, Science, 321, 385388 (2008) 10.1126/science.1157996Search in Google Scholar

10 Lei, Y. D., Tang, Z. H., Liao, R. J. and Guo, B. C., “Hydrolysable Tannin as Environmentally Friendly Reducer and Stabilizer for Graphene Oxide”, Green Chem., 13, 16551658 (2011) 10.1039/C1GC15081BSearch in Google Scholar

11 Liao, R. J., Tang, Z. H., Lin, T. F. and Guo, B. C., “Scalable and Versatile Graphene Functionalized with the Mannich Condensate”, ACS Appl. Mater. Interfaces, 5, 21742181 (2013) 10.1021/am3032822Search in Google Scholar

12 Lin, D. H., Liu, N., Yang, K., Zhu, L. Z., Xu, Y. and Xing, B. S., “The Effect of Ionic Strength and pH on the Stability of Tannic Acid Facilitated Carbon Nanotube Suspensions”, Carbon, 47, 28752882 (2009) 10.1016/j.carbon.2009.062.036Search in Google Scholar

13 Litvinov, V. M., Dias, A. A., “Analysis of Network Structure of UV-Cured Acrylates by 1H NMR Relaxation, 13CNMR Spectroscopy, and Dynamic Mechanical Experiments”, Macromolecules, 34, 40514060 (2001) 10.1021/ma010066uSearch in Google Scholar

14 Liu, K. P., Li, H. M., Wang, Y. M., Gou, X. J. and Duan, Y. X., “Adsorption and Removal of Rhodamine B from Aqueous Solution by Tannic Acid Functionalized Graphene”, Colloids Surf., A, 477, 3541 (2015) 10.1016/j.colsurfa.2015.03.048Search in Google Scholar

15 Luo, J., Lai, J., Zhang, N., Liu, Y., Liu, R. and Liu, X., “Tannic Acid Induced Self-Assembly of Three-Dimensional Graphene with Good Adsorption and Antibacterial Properties”, ACS Sustainable Chem. Eng., 4, 14041413 (2016) 10.1021/acssuschemeng.5b01407Search in Google Scholar

16 Luo, J., Zhang, N., Lai, J. P., Liu, R. and Liu, X. Y., “Tannic Acid Functionalized Graphene Hydrogel for Entrapping Gold Nanoparticles with High Catalytic Performance toward Dye Reduction”, J. Hazard. Mater., 300, 615623 (2015) 10.1016/j.jhazmat_2015.07.079Search in Google Scholar

17 Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y. and Dubonos, S. V., “Electric Field Effect in Atomically Thin Carbon Films”, Science, 306, 666669 (2004) 10.1126/science.1102896Search in Google Scholar

18 Potts, J. R., Shankar, O., Du, L. and Ruoff, R. S., “Processing-Morphology-Property Relationships and Composite Theory Analysis of Reduced Graphene Oxide/Natural Rubber Nanocomposites”, Macromolecules, 45, 60456055 (2012) 10.1021/ma300706kSearch in Google Scholar

19 Rehman, W., Liaqat, K., Fazil, S., Saeed, S., Waseem, M., Shakeel, M., Miriram, S. and Guo, B. C. Y., “Chemically Tethered Functionalized Graphene Oxide Based Novel Sulfonated Polyimide Composite for Polymer Electrolyte Membrane”, J. Polym. Res., 26, 82 (2019) 10.1007/s10965-019-1744-2Search in Google Scholar

20 Sotta, P., Fülber, C., Demco, D. E., Blümich, B. and Spiess, H. W.Effect of Residual Dipolar Interactions on the NMR Relaxation in Cross-Linked Elastomers”, Macromolecules, 29, 62226230 (1996) 10.1021/ma960141eSearch in Google Scholar

21 Tang, Z., Wu, X., Guo, B., Zhang, L. and Jia, D., “Preparation of Butadiene-Styrene–Vinyl Pyridine Rubber-Graphene Oxide Hybrids through Co-Coagulation Process and in situ Interface Tailoring”, J. Mater. Chem., 22, 74927501 (2012) 10.1039/C2JM00084ASearch in Google Scholar

22 Tang, Z., Zeng, C., Lei, Y., Guo, B., Zhang, L. and Jia, D., “Fluorescent Whitening Agent Stabilized Graphene and Its Composites with Chitosan”, J. Mater. Chem., 21, 1711117118 (2011) 10.1039/c1jm13239cSearch in Google Scholar

23 Valentin, J. L., Mora-Barrantes, I., Carretero-Gonzalez, J., Lopez-Manchado, M. A., Sotta, P., Long, D. R. and Saalwachter, K., “Novel Experimental Approach to Evaluate Filler-Elastomer Interactions”, Macromolecules, 43, 334346 (2010) 10.1021/ma901999jSearch in Google Scholar

24 Wei, Q., Haag, R., “Universal Polymer Coatings and Their Representative Biomedical Applications”, Mater. Horiz., 2, 567577 (2015) 10.1039/C5MH00089 KSearch in Google Scholar

25 Xu, Y., Bai, H., Lu, G., Li, C. and Shi, G., “Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets”, J. Am. Chem. Soc., 130, 58565857 (2008)PMid:18399634; 10.1021/ja800745ySearch in Google Scholar

26 Xu, Y., Liu, Z., Zhang, X., Wang, Y., Tian, J., Huang, Y., Ma, Y., Zhang, X. and Chen, Y., “A Graphene Hybrid Material Covalently Functionalized with Porphyrin: Synthesis and Optical Limiting Property”, Adv. Mater., 21, 12751279 (2010) 10.1002/adma.200801617Search in Google Scholar

27 Yang, D., Zhang, W., Jiang, B. and Guo, Y., “Silicone Rubber Ablative Composites Improved with Zirconium Carbide or Zirconia”, Composites Part A, 44, 7077 (2013) 10.1016/j.compositesa.2012.09.002Search in Google Scholar

28 Yang, W., Luo, R. Y. and Hou, Z. H., “Effect of Interface Modified by Graphene on the Mechanical and Frictional Properties of Carbon/Graphene/Carbon Composites”, Materials, 9, 492 (2016) 10.3390/ma9060492Search in Google Scholar

29 Yang, Z. J., Liu, J., Liao, R. J., Yang, G. W., Wu, X. H., Tang, Z. H., Guo, B. C., Zhang, L. Q., Ma, Y., Nie, Q. H. and Wang, F., “Rational Design of Covalent Interfaces for Graphene/Elastomer Nanocomposites”, Compos. Sci. Technol., 132, 6875 (2016) 10.1016/j.compscitech.2016.06.015Search in Google Scholar

30 Ye, Y. S., Wang, H., Bi, S. G., Xue, Y., Xue, Z.G., Zhou, X. P., Xie, X. L., and MaiY. W., “High Performance Composite Polymer Electrolyte Using Polymeric Ionic Liquid-Functionalized Graphene Molecular Brushes”, J. Mater. Chem. A, 3, 1806418073 (2015) 10.1039/c5ta02940fSearch in Google Scholar

31 Yoo, S., Li, X., Wu, Y., Liu, W. H., Wang, X. L. and Yi, W. H., “Ammonia Gas Detection by Tannic Acid Functionalized and Reduced Graphene Oxide at Room Temperature”, J. Nanomater., 7, 16 (2014) 10.1155/2014/497384Search in Google Scholar

32 Zhang, M., Li, Y., Su, Z. and Wei, G., “Recent Advances in the Synthesis and Applications of Graphene-Polymer Nanocomposites”, Polym. Chem., 6, 61076124 (2015) 10.1039/C5PY00777ASearch in Google Scholar

33 Zhao, S., Chang, H. Y., Chen, S. J., Cui, J. and Yan, Y. H., “High Performance and Multifunctional Epoxy Composites Filled with Epoxide-Functionalized Graphene”, Eur. Polym. J., 84, 300312 (2016) 10.1016/j.eurpolymj.2016.09.036Search in Google Scholar

34 Zhao, S., Wang, H., Xin, L., Cui, J. and Yan, Y., “A Versatile Platform of 2-(3,4-dihydroxyphenyl) Pyrrolidine Grafted Graphene for Preparation of Various Graphene-Derived Materials”, Chem. Asian. J., 10, 11771183 (2015) 10.1002/asia.201403439Search in Google Scholar

35 Zhao, S., Xie, S. C., Zhao, Z., Zhang, J. L., Li, L. and Xin, Z. X., “Green and High-Efficiency Production of Graphene by Tannic Acid-Assisted Exfoliation of Graphite in Water”, ACS Sustainable Chem. Eng., 6, 76527661 (2018a) 10.1021/acssuschemeng.8b00497Search in Google Scholar

36 Zhao, S., Xie, S. C., Sun, P. P., Zhao, Z., Li, L., Shao, X. M., Liu, X. L. and Xin, Z. X.Synergistic Effect of Graphene and Silicon Dioxide Hybrids through Hydrogen Bonding Self-Assembly in Elastomer Composites”, RSC Adv., 8, 1781317825 (2018b) 10.1039/c8ra01659cSearch in Google Scholar

37 Zhao, Z., Li, L., Shao, X. M., Liu, X. L., Zhao, S., Xie, S. C. and Xin, Z. X., “Tannic Acid-Assisted Green Fabrication of Functionalized Graphene towards Its Enhanced Compatibility in NR Nanocomposite”, Polym. Test., 70, 396402 (2018c) 10.1021/acssuschemeng.8b00497Search in Google Scholar

38 Zou, C. R., Zhang, C. R. and Li, B., “Microstructure and Properties of Porous Silicon Nitride Ceramics Prepared by Gel-Casting and Gas Pressure Sintering”, Mater. Des., 44, 114118 (2013) 10.1016/j.matdes.2012.07.056Search in Google Scholar

Received: 2019-09-18
Accepted: 2019-12-07
Published Online: 2020-04-09
Published in Print: 2020-04-29

© 2020, Carl Hanser Verlag, Munich

Downloaded on 31.1.2023 from
Scroll Up Arrow