Accessible Unlicensed Requires Authentication Published by De Gruyter June 22, 2020

The Influence of Melt-Mixing Conditions and State of Dispersion on Crystallisation, Rheology and Mechanical Properties of PCL/Sepiolite Nanocomposites

M. Eriksson, M. Meuwissen, T. Peijs and H. Goossens

Abstract

It is generally accepted that the benefit of anisotropic nanofiller addition is strongly dependent on the state of the dispersion of these fillers in a polymer matrix. In this paper the influence of melt-compounding conditions on the dispersion of a needle-like clay, i. e. sepiolite, in poly(∊-caprolactone) (PCL) is investigated. The crystallisation behavior as well as the rheological and mechanical properties of PCL/sepiolite nanocomposites with filler contents up to 5 wt.% are studied. By changing the screw speed during melt-mixing in a micro-compounder, the state of dispersion was varied, with the higher speed leading to better dispersion and breakdown of the sepiolite agglomerates or bundles. Rheometry showed that better dispersed nanocomposites displayed an increase in viscosity due to network formation at slightly higher filler loadings. Likewise, better dispersed composites showed a modest increase in crystallisation temperature at low filler content, accompanied by a decrease in both nucleation efficiency and degree of crystallisation at higher loadings. Better dispersed nanocomposite systems also showed superior mechanical properties, particularly at higher filler loadings. However, overall the reinforcing efficiency of sepiolite in all nanocomposites was relatively low. This was mainly a consequence of the relatively low filler aspect ratio and the simultaneous breakup of sepiolite needles together with a breakdown of bundles during compounding.


*Correspondence address, Mail address: Ton Peijs, WMG, Materials Engineering Centre, The University of Warwick, CV4 7AL, Coventry, UK, E-mail:

References

1 Alexandre, M., Dubois, P., “Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials”, Mater. Sci. Eng. R Rep., 28, 163 (2000) 10.1016/S0927-796X(00)00012-7Search in Google Scholar

2 Avella, M., Errico, M. E., Rimedio, R. and Sadocco, P., “Preparation of Biodegradable Polyesters/High-Amylose-Starch Composites by Reactive Blending and their Characterization”, J. Appl. Polym. Sci., 83, 14321442 (2002) 10.1002/app.2304Search in Google Scholar

3 Avella, M., Bondioli, F., Cannello, V., Di Pace, E., Errico, M. E., Ferrari, A. M., Focher, B. and Malinconico, M., “Poly(∊-caprolactone)-Based Nanocomposites: Influence of Compatibilization on Properties of Poly(∊-caprolactone)-Silica Nanocomposites”, Compos. Sci. Technol., 66, 886894 (2006) 10.1016/j.compscitech.2005.08.014Search in Google Scholar

4 Beall, G. W., PowellC. E.: Fundamentals of Polymer-Clay Nanocomposites, 1st Edition, Cambridge University Press, Cambridge (2011)Search in Google Scholar

5 Bilotti, E., Fischer, H. R. and Peijs, T., “Polymer Nanocomposites Based on Needle-Like Sepiolite Clays: Effect of Functionalized Polymers on the Dispersion of Nanofiller, Crystallinity, and Mechanical Properties”, J. Appl. Polym. Sci., 107, 11161123 (2008) 10.1002/app.25395Search in Google Scholar

6 Bilotti, E., Zhang, R., Deng, H., Quero, F., Fischer, H. R. and Peijs, T., “Sepiolite Needle-Like Clay for PA6 Nanocomposites: An Alternative to Layered Silicates?”, Compos. Sci. Technol., 69, 25872595 (2009) 10.1016/j.compscitech.2009.07.016Search in Google Scholar

7 Bilotti, E., Deng, H., Zhang, R., Lu, D., Bras, W., Fischer, H. R. and PeijsT., “Synergistic Reinforcement of Highly Oriented Poly (Propylene) Tapes by Sepiolite Nanoclay”, Macromol. Mater. Eng., 295, 3747 (2010) 10.1002/mame.200900156Search in Google Scholar

8 Broekaert, C., Peeterbroeck, S., Benali, S., Monteverde, F., Bonnaud, L., Alexandre, M. and Dubois, P., “Chlorinated Polyethylene/Layered Silicate Nanocomposites: Poly(∊-caprolactone)-Based “Masterbatch” Approach”, Eur. Polym. J., 43, 41604168 (2007) 10.1016/j.eurpolymj.2007.08.003Search in Google Scholar

9 Carrot, G., Rutot-Houzé, D., Pottier, A., Degée, P., Hilborn, J. and Dubois, P., “Surface-Initiated Ring-Opening Polymerization: A Versatile Method for Nanoparticle Ordering”, Macromolecules, 35, 84008404 (2002) 10.1021/Ma020558 mSearch in Google Scholar

10 Chen, B., Evans, J. R. G., “Poly(∊-caprolactone) – Clay Nanocomposites: Structure and Mechanical Properties”, Macromolecules, 39, 747754 (2006) 10.1021/ma052154aSearch in Google Scholar

11 Chen, H., Zheng, M., Sun, H. and Jia, Q., “Characterization and Properties of Sepiolite/Polyurethane Nanocomposites”, Mater. Sci. Eng. A, 445–446, 725730 (2007) 10.1016/j.msea.2006.10.008Search in Google Scholar

12 Chen, H., Zeng, D., Xiao, X., Zheng, M., Ke, C. and Li, Y., “Influence of Organic Modification on the Structure and Properties of Polyurethane/Sepiolite Nanocomposites”, Mater. Sci. Eng. A, 528, 16561661 (2011) 10.1016/j.msea.2010.10.087Search in Google Scholar

13 Chrissafis, K., Antoniadis, G., Paraskevopoulos, K. M., Vassiliou, A. and Bikiari, D. N., “Comparative Study of the Effect of Different Nanoparticles on the Mechanical Properties and Thermal Degradation Mechanism of in situ Prepared Poly(∊-caprolactone) Nanocomposites”, Compos. Sci. Technol., 67, 21652174 (2007) 10.1016/j.compscitech.2006.10.027Search in Google Scholar

14 De Menezes, A. J., Siqueira, G., Curvelo, A. A. S. and Dufresne, A., “Extrusion and Characterization of Functionalized Cellulose Whisker Reinforced Polyethylene Nanocomposites”, Polymer, 50, 45524563 (2009) 10.1016/J.Polymer.2009.07.038Search in Google Scholar

15 Deng, H., Bilotti, E., Zhang, R. and Peijs, T., “Effective Reinforcement of Carbon Nanotubes in Polypropylene Matrices”, J. Appl. Polym. Sci., 118, 3041 (2010) 10.1002/app.30783Search in Google Scholar

16 Di, Y., Iannace, S., Di Maio, E. and Nicolais, L., “Nanocomposites by Melt Intercalation Based on Polycaprolactone and Organoclay”, J. Polym. Sci. B. Polym. Phys., 41, 670678 (2003) 10.1002/polb.10420Search in Google Scholar

17 Eriksson, M., Goffin, A. L., Dubois, P.Peijs, T., and Goossens, H., “The Influence of Grafting on Flow-Induced Crystallization and Rheological Properties of Poly(∊-caprolactone/Cellulose Nanocrystal Nanocomposites”, Nanocomposites, 4, 87101 (2018) 10.1080/20550324.2018.1529713Search in Google Scholar

18 Eriksson, M., Peijs, T. and Goossens, H., “The Effect of Polymer Molecular Weight and Silica Nanoparticles on the Rheological and Mechanical Properties of Poly(∊-caprolactone)”, Nanocomposites, 4, 112126 (2018) 10.1080/20550324.2018.1534792Search in Google Scholar

19 Van Erp, T. B., Reynolds, C. T., Bilotti, E. and Peijs, T., “Nanoclay Assisted Ultra-Drawing of Polypropylene Tapes”, Nanocomposites, 5, 114123 (2019) 10.1080/20550324.2019.1671038Search in Google Scholar

20 Fillon, B., Wittmann, J. C., Lotz, B. and Thierry, A., “Self-Nucleation and Recrystallization of Isotactic Polypropylene (Α Phase) Investigated by Differential Scanning Calorimetry”, J. Polym. Sci. B. Polym. Phys., 31, 13831393 (1993a) 10.1002/polb.1993.090311013Search in Google Scholar

21 Fillon, B., Lotz, B., Thierry, A. and Wittmann, J. C., “Self-Nucleation and Enhanced Nucleation of Polymers. Definition of a Convenient Calorimetric “Efficiency Scale” and Evaluation of Nucleating Additives in Isotactic Polypropylene (Α Phase)”, J. Polym. Sci. B. Polym. Phys., 31, 13951405 (1993b) 10.1002/polb.1993.090311014Search in Google Scholar

22 Fornes, T. D., Paul, D. R., “Modeling Properties of Nylon 6/Clay Nanocomposites Using Composite Theories”, Polymer., 44, 49935013 (2003) 10.1016/S0032-3861(03)00471-3Search in Google Scholar

23 Franchini, E., Galy, J. and Gérard, J. F., “Sepiolite-Based Epoxy Nanocomposites: Relation between Processing, Rheology, and Morphology”, J. Colloid Interface Sci., 329, 3847 (2009) 18848336 10.1016/j.jcis.2008.09.020Search in Google Scholar

24 Fukushima, K., Tabuani, D. and Camino, G., “Nanocomposites of PLA and PCL Based on Montmorillonite and Sepiolite”, Mater. Sci. Eng. C., 29, 14331441 (2009) 10.1016/j.msec.2008.11.005Search in Google Scholar

25 Galan, E., “Properties and Applications of Palygorskite-Sepiolite Clay”, Clay Miner., 31, 443453 (1996) 10.1180/claymin.1996.031.4.01Search in Google Scholar

26 Gao, Y., Picot, O. T., Bilotti, E. and PeijsT., “Influence of Filler Size on the Properties of Poly (lactic acid) (PLA)/Graphene Nanoplatelet (GNP) Nanocomposites”, Eur. Polym. J., 86, 117131 (2017) 10.1016/j.eurpolymj.2016.10.045Search in Google Scholar

27 Gao, Y., Picot, O. T., Zhang, H., Bilotti, E. and Peijs, T., “Synergistic Effects of Filler Size on Thermal Annealing-Induced Percolation in Polylactic Acid (PLA)/Graphite Nanoplatelet (GNP) Nanocomposites”, Nanocomposites, 3, 6775 (2017) 10.1080/20550324.2017.1333780Search in Google Scholar

28 García-López, D., Fernández, J. F., Merino, J. C., Santarén, J. and Pastor, J. M., “Effect of Organic Modification of Sepiolite for PA 6 Polymer/Organoclay Nanocomposites”, Compos. Sci. Technol., 70, 14291436, (2010) 10.1016/j.compscitech.2010.05.020Search in Google Scholar

29 García-López, D., Fernández, J. F., Merino, J. C. and Pastor, J. M., “Influence of Organic Modifier Characteristic on the Mechanical Properties of Polyamide 6/Organosepiolite Nanocomposites”, Composites Part B, 45, 459465 (2013) 10.1016/j.compositesb.2012.09.087Search in Google Scholar

30 Goffin, A. L., Raquez, J. M., Duquesne, E., Siqueira, G., Habibi, Y., Dufresne, A. and Dubois, P., “Poly(∊-caprolactone) Based Nanocomposites Reinforced by Surface-Grafted Cellulose Nanocrystals via Extrusion Processing: Morphology, Rheology, and Thermo-Mechanical Properties”, Polymer, 52, 15321538 (2011) 10.1016/j.polymer.2011.02.004Search in Google Scholar

31 Gorrasi, G., Tortora, M., Vittoria, V., Pollet, E., Alexandre, M. and Dubois, P., “Physical Properties of Poly(∊-caprolactone) Layered Silicate Nanocomposites Prepared by Controlled Grafting Polymerization”, J. Polym. Sci. B. Polym. Phys., 42, 14661475 (2004) 10.1002/polb.20042Search in Google Scholar

32 Habibi, Y., Goffin, A. L., Schiltz, N., Duquesne, E., Dubois, P. and Dufresne, A., “Bionanocomposites Based on Poly(∊-caprolactone)-Grafted Cellulose Nanocrystals by Ring-Opening Polymerization”, J. Mater. Chem., 18, 50025010 (2008) 10.1039/B809212ESearch in Google Scholar

33 Halpin, J. C., Kardos, J. L., “The Halpin-Tsai Equations: A Review”, Polym. Eng. Sci., 16, 344352 (1976) 10.1002/pen.760160512Search in Google Scholar

34 Handge, U. A., Hedicke-Höchstötter, K. and Altstädt, V., “Composites of Polyamide 6 and Silicate Nanotubes of the Mineral Halloysite: Influence of Molecular Weight on Thermal, Mechanical and Rheological Properties”, Polymer, 51, 26902699 (2010) 10.1016/j.polymer.2010.04.041Search in Google Scholar

35 Hull, D., Clyne, T. W.: An Introduction to Composite Materials, 1st Edition, Cambridge University Press, Cambridge (1996) 10.1017/CBO9781139170130Search in Google Scholar

36 Joubert, M., Delaite, C., Bourgeat-Lami, E. and Dumas, P., “Ring-Opening Polymerization of ∊-Caprolactone and L-Lactide from Silica Nanoparticles Surface”, J. Polym. Sci. A. Polym. Chem., 42, 19761984 (2004) 10.1002/pola.20035Search in Google Scholar

37 Kai, W., Hironata, Y., Hua, L. and Inoue, Y., “Thermal and Mechanical Properties of a Poly(∊-caprolactone)/Graphite Oxide Composite”, J. Appl. Polym. Sci., 107, 13951400 (2008) 10.1002/app.27210Search in Google Scholar

38 Kharchenko, S. B., Douglas, J. F., Obrzut, J., Grulke, E. A. and Migler, K. B., “Flow-Induced Properties of Nanotube-Filled Polymer Materials”, Nat. Mater., 3, 564568 (2004) 15273745 10.1038/nmat1183Search in Google Scholar

39 Lepoittevin, B., Pantoustier, N., Alexandre, M., Calberg, C., Jerome, R. and Dubois, P., “Polyester Layered Silicate Nanohybrids by Controlled Grafting Polymerization”, J. Mater. Chem., 12, 35283532 (2002) 10.1039/B205787ESearch in Google Scholar

40 Li, Y., Han, C., Bian, J., Zhang, X., Han, L and Dong, L., “Crystallization and Morphology Studies of Biodegradable Poly(Epsilon-Caprolactone)/Silica Nanocomposites”, Polym. Compos., 34, 131140 (2013) 10.1002/pc.22384Search in Google Scholar

41 Li, Y., Han, C., Zhang, X., Bian, J. and Han, L., “Rheology, Mechanical Properties, and Biodegradation of Poly(epsilon-caprolactone)/Silica Nanocomposites”, Polym. Compos., 34, 16201628 (2013) 10.1002/pc.22562Search in Google Scholar

42 Liu, Q., Chen, D., “Viscoelastic Behaviors of Poly(∊-caprolactone)/Attapulgite Nanocomposites”, Eur. Polym. J., 44, 20462050 (2008) 10.1016/j.eurpolymj.2008.04.035Search in Google Scholar

43 Lorenzo, A. T., Arnal, M. L., Albuerne, J. and Muller, A. J., “DSC Isothermal Polymer Crystallization Kinetics Measurements and the Use of the Avrami Equation to Fit the Data: Guidelines to Avoid Common Problems”, Polym. Test., 26, 222231 (2007) 10.1016/j.polymertesting.2006.10.005Search in Google Scholar

44 Ludeña, L. N., Alvarez, V. A. and Vazquez, A., “Processing and Microstructure of PCL/Clay Nanocomposites”, Mater. Sci. Eng. A, 460–461, 121129 (2007) 10.1016/j.msea.2007.01.104Search in Google Scholar

45 Ma, J., Bilotti, E., Peijs, T. and Darr, J. A., “Preparation of Polypropylene/Sepiolite Nanocomposites Using Supercritical CO2 Assisted Mixing”, Eur. Polym. J., 43, 49314939 (2007) 10.1016/J.Eurpolymj.2007.09.010Search in Google Scholar

46 Masenelli-Varlot, K., Reynaud, E., Vigier, G., Varlet, J., “Mechanical Properties of Clay-Reinforced Polyamide”, J. Polym. Sci. B. Polym. Phys., 40, 272283 (2002) 10.1002/polb.10088Search in Google Scholar

47 Moon, J. H., Ramaraj, B., Lee, S. M. and Yoon, K. R., “Direct Grafting of ∊-Caprolactone on Solid Core/Mesoporous Shell Silica Spheres by Surface-Initiated Ring-Opening Polymerization”, J. Appl. Polym. Sci., 107, 26892694 (2008) 10.1002/app.27369Search in Google Scholar

48 Murariu, M., Dechief, A. L., Ramy-Ratiarison, R., Paint, Y., Raquez, J. M. and Dubois, P., “Recent Advances in Production of Poly(lactic acid) (PLA) Nanocomposites: A Versatile Method to Tune Crystallization Properties of PLA”, Nanocomposites, 1, 7182 (2015) 10.1179/2055033214Y.0000000008Search in Google Scholar

49 Nabarun, R., Bhowmick, A. K., “Novel in Situ Polydimethylsiloxane-Sepiolite Nanocomposites: Structure-Property Relationship”, Polymer, 51, 51725185 (2010) 10.1016/j.polymer.2010.08.064Search in Google Scholar

50 Nuñez, K., Rosales, C., Perera, R., Villarreal, N. and Pastor, J. M., “Poly(lactic acid)/Low-Density Polyethylene Blends and its Nanocomposites Based on Sepiolite”, Polym. Eng. Sci., 52, 9881004 (2012) 10.1002/pen.22168Search in Google Scholar

51 Pastukhov, L. V., Mercx, F. P., Peijs, T. and Govaert, L. E., “Long-Term Performance and Durability of Polycarbonate/Carbon Nanotube Nanocomposites”, Nanocomposites, 4, 223237 (2018) 10.1080/20550324.2018.1558799Search in Google Scholar

52 Priftis, D., Sakellariou, G., Hadjichristidis, N., Penott, E. K., Lorenzo, A. T. and Müller, A. J., “Surface Modification of Multiwalled Carbon Nanotubes with Biocompatible Polymers via Ring Opening and Living Anionic Surface-Initiated Polymerization. Kinetics and Crystallization Behavior”, J. Polym. Sci. A Polym. Chem., 47, 43794390 (2009) 10.1002/pola.23491Search in Google Scholar

53 Ray, S. S., Okamoto, M., “Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing”, Prog. Polym. Sci., 28, 15391641 (2003) 10.1016/j.progpolymsci.2003.08.002Search in Google Scholar

54 Schrauwen, B. A., Janssen, R. P., Govaert, L. E. and Meijer, H. E., “Intrinsic Deformation Behavior of Semicrystalline Polymers”, Macromolecules, 37, 60696078 (2015) 10.1021/ma035279tSearch in Google Scholar

55 Sellam, C., Zhai, Z., Zahabi, H., Picot, O. T., Deng, H., Fu, Q., Bilotti, E. and Peijs, T.High Mechanical Reinforcing Efficiency of Layered Poly(vinyl alcohol) – Graphene Oxide Nanocomposites”, Nanocomposites, 1, 8995 (2015) 10.1179/2055033215Y.0000000001Search in Google Scholar

56 Shafiq, M., Yasin, T. and Saeed, S., “Synthesis and Characterization of Linear Low-Density Polyethylene/Sepiolite Nanocomposites”, J. Appl. Polym. Sci., 123, 17181723 (2012) 10.1002/app.34633Search in Google Scholar

57 Tarkin-Tas, E., Goswami, S. K., Nayak, B. R. and Mathias, L. J., “Highly Exfoliated Poly(∊-Caprolactone)/Organomontmorillonite Nanocomposites Prepared by in situ Polymerization”, J. Appl. Polym. Sci., 107, 976984 (2008) 10.1002/app.26964Search in Google Scholar

58 Trujillo, M., Arnal, M. L., Müller, A. J., Mujica, M. A., De Navarro, C. U., Ruelle, B. and Dubois, P., “Supernucleation and Crystallization Regime Change Provoked by MWNT Addition to Poly(∊-caprolactone)”, Polymer, 53, 832841 (2012) 10.1016/j.polymer.2011.12.028Search in Google Scholar

59 Wang, Z., Ciselli, P. and Peijs, T., “The Extraordinary Reinforcing Efficiency of Single-Walled Carbon Nanotubes in Oriented Poly(vinyl alcohol) Tapes”, Nanotechnology, 18, 455709 (2007) 10.1088/0957–4484/18/45/455709Search in Google Scholar

60 Wang, X. L., Huang, F. Y., Zhou, Y. and Wang, Y. Z., “Nonisothermal Crystallization Kinetics of Poly(∊-caprolactone)/Montmorillonite Nanocomposites”, J. Macromol. Sci. B., 48, 710722 (2009) 10.1080/00222340902959420Search in Google Scholar

61 Wang, Z., Bilotti, E. and Peijs, T., “Effective Modulus of Single- and Multi-Walled Carbon Nanotubes in Melt-Compounded Polycarbonate Nanocomposites”, Adv. Compos. Lett., 19, 182187 (2010) 10.1177/096369351001900505Search in Google Scholar

62 Woodruff, M. A., Hutmacher, D. W., “The Return of a Forgotten Polymer-Polycaprolactone in the 21st Century”, Prog. Polym. Sci., 35, 12171256 (2010) 10.1016/j.progpolymsci.2010.04.002Search in Google Scholar

63 Wu, D., Wu, L., Sun, Y. and Zhang, M., “Rheological Properties and Crystallization Behavior of Multi-Walled Carbon Nanotube/Poly(∊-caprolactone) Composites”, J. Polym. Sci. B. Polym. Phys., 45, 31373147 (2007) 10.1002/polb.21309Search in Google Scholar

64 Wu, X., Torres, F. G., Vilaseca, F. and Peijs, T., “Influence of the Processing Conditions on the Mechanical Properties of Chitin Whisker Reinforced Poly(caprolactone) Nanocomposites”, J. Biobased Mater., 1, 341350 (2007) 10.1166/jbmb.2007.008Search in Google Scholar

65 Zheng, Y., Zheng, Y., “Study on Sepiolite-Reinforced Polymeric Nanocomposites”, J. Appl. Polym. Sci., 99, 21632166 (2006) 10.1002/app.22337Search in Google Scholar

Received: 2019-09-20
Accepted: 2020-03-23
Published Online: 2020-06-22
Published in Print: 2020-07-03

© 2020, Carl Hanser Verlag, Munich