Accessible Requires Authentication Published by De Gruyter June 22, 2020

Enhanced Dispersion and Mechanical Behavior of Polypropylene Composites Compounded Using Extension-Dominated Extrusion

C. Danda, V. Pandey, T. Schneider, R. Norman and J. M. Maia

Abstract

The process of dispersing filler in polymer matrix is vital to the behavior of polymer composites. The current study involves understanding the extent of dispersion of filler by only varying the nature of mixing during the process. Identical polymer composite materials are processed via two different kinds of mixing sections on the screw in a twin-screw extruder, differing in the type and amount of stress they impose on the filler agglomerate. An aggressive (900) Kneading Block (KB) mixing section is compared with recently developed Extensional Mixing Elements (EMEs), which impart extension dominated mixing while KB imparts shear dominated mixing. Various EME geometries of different levels of aggressiveness were computationally studied and validated. Composites obtained from KB are compared with composites processed using five different EME geometries. Three composites of Polypropylene (PP) filled with carbon black, graphene nano platelets and carbon nanotubes were studied independently. Composites processed through EMEs display about an order of magnitude better dispersion of filler agglomerate over the composites processed through KB. In addition, enhanced modulus and yield stress is observed for composites processed through EMEs. An improvement of 63% to 266% in the strain achieved for EME processed composites is seen under biaxial film stretching.


*Correspondence address, Mail address: João M. Maia, Department of Macromolecular Science and Engineering, Adelbert Road, Case Western Reserve University, Cleveland, OH 44106, USA, E-mail:

References

1 Alig, I., Potschke, P., Lellinger, D., Skipa, T., Pegel, S., Kasaliwal, G. R. and Villmow, T., “Establishment, Morphology and Properties of Carbon Nanotube Networks in Polymer Melts”, Polymer, 53, 428 (2012) 10.1016/j.polymer.2011.10.063 Search in Google Scholar

2 Alig, I., Skipa, T., Lellinger, D. and Potschke, P., “Destruction and Formation of a Carbon Nanotube Network in Polymer Melts: Rheology and Conductivity Spectroscopy”, Polymer, 49, 35243532 (2008) 10.1016/j.polymer.2008.05.037 Search in Google Scholar

3 Allan, P. S., Bevis, M. J., Gibson, J. R., May, C. J. and Pinwill, I. E., “Shear Controlled Orientation Technology for the Management of Reinforcing Fibres in Moulded and Extruded Composite Materials”, J. Mater. Process. Tech., 56, 272281 (1996) 10.1016/0924-0136(96)85104-1 Search in Google Scholar

4 Bouquey, M., Loux, C., Muller, R. and Bouchet, G., “Morphological Study of Two-Phase Polymer Blends during Compounding in a Novel Compounder on the Basis of Elongational Flows”, J. Appl. Polym. Sci., 119, 482490 (2011) 10.1002/app.32645 Search in Google Scholar

5 Cardoso, P., Silva, J., Klosterman, D., Covas, J. A., van Hattum, F. W. J., Simoes, R. and Lanceros-Mendez, S., “The Influence of the Dispersion Method on the Electrical Properties of Vapor-Grown Carbon Nanofiber/Epoxy Composites”, Nanoscale Res. Lett., 6, 370 (2011) 21711873 10.1186/1556-276x-6-370 Search in Google Scholar

6 Carson, S. O., Covas, J. A. and Maia, J. M., “A New Extensional Mixing Element for Improved Dispersive Mixing in Twin-Screw Extrusion, Part 1: Design and Computational Validation”, Adv. Polym. Tech., 36, 455465 (2017) 10.1002/adv.21627 Search in Google Scholar

7 Carson, S. O., Maia, J. M. and Covas, J. A., “A New Extensional Mixing Element for Improved Dispersive Mixing in Twin-Screw Extrusion, Part 2: Experimental Validation for Immiscible Polymer Blends”, Adv. Polym. Tech., 37, 167175 (2018) 10.1002/adv.21653 Search in Google Scholar

8 Chen, H., Pandey, V., Carson, S. and Maia, J. M., “Enhanced Dispersive Mixing in Twin-Screw Extrusion via Extension-Dominated Static Mixing Elements of Varying Contraction Ratios”, Int. Polym. Proc., 35, 3749 (2020), 10.3139/217.3857 Search in Google Scholar

9 Cogswell, F. N., “Converging Flow and Stretching Flow – Compilation”, J. Non-Newton. Fluid Mech., 4, 2338 (1978) 10.1016/0377-0257(78)85004-6 Search in Google Scholar

10 Covas, J. A., Maia, J. M., Machado, A. V. and Costa, P., “On-Line Rotational Rheometry for Extrusion and Compounding Operations”, J. Non-Newton Fluid Mech., 148, 8896 (2008) 10.1016/j.jnnfm.2007.04.009 Search in Google Scholar

11 Fu, S. Y., Feng, X. Q., Lauke, B. and Mai, Y. W., “Effects of Particle Size, Particle/Matrix Interface Adhesion and Particle Loading on Mechanical Properties of Particulate-Polymer Composites”, Composites Part B, 39, 933961 (2008) 10.1016/j.compositesb.2008.01.002 Search in Google Scholar

12 Ganesh, S., Lohar, B. F. J., “Influence of Carbon Black (CB) on the Mechanical Behaviour and Microscopic Analysis of Poly-Propylene (PP)/Acrylonitrile-butadiene-styrene (ABS) Nanocomposites”, Procedia Manuf., 20, 8590 (2018) Search in Google Scholar

13 Garcia, M., van Vliet, G., Jain, S., Schrauwen, B. A. G., Sarkissov, A., van Zyl, W. E. and Boukamp, B., “Polypropylene/SiO2 Nanocomposites with Improved Mechanical Properties”, Rev. Adv. Mater. Sci., 6, 169175 (2004) Search in Google Scholar

14 Grace, H. P., “Dispersion Phenomena in High-Viscosity Immiscible Fluid Systems and Application of Static Mixers as Dispersion Devices in Such Systems”, Chem. Eng. Commun., 14, 225277 (1982) 10.1080/00986448208911047 Search in Google Scholar

15 Ibarra-Gomez, R., Muller, R., Bouquey, M., Rondin, J., Serra, C. A., Hassouna, F., El Mouedden, Y., Toniazzo, V. and Ruch, D., “Processing of Nanocomposites PLA/Graphite Using a Novel Elongational Mixing Device”, Polym. Eng. Sci., 55, 214222 (2015) 10.1002/pen.23869 Search in Google Scholar

16 Iftekharul Islam, S. S., Swapan KumerRay, Husna Parvin Nur, Md.ToffazzalHossain, Walliullah Md.Ajmotgir, “Electrical and Tensile Properties of Carbon Black Reinforced Polyvinyl Chloride Conductive Composites”, Journal of Carbon Research, 4, 112 (2018) 10.3390/c4010015 Search in Google Scholar

17 Jacobsen, S., Fritz, H. G., Degee, P., Dubois, P. and Jerome, R., “Single-Step Reactive Extrusion of PLLA in a Corotating Twin-Screw Extruder Promoted by 2-Ethylhexanoic Acid Tin(II) Salt and Triphenylphosphine”, Polymer, 41, 33953403 (2000) 10.1016/S0032-3861(99)00507-8 Search in Google Scholar

18 Jamali, S., Paiva, M. C. and Covas, J. A., “Dispersion and Re-Agglomeration Phenomena during Melt Mixing of Polypropylene with Multi-Wall Carbon Nanotubes”, Polym. Test., 32, 701707 (2013) 10.1016/j.polymertesting.2013.03.005 Search in Google Scholar

19 Jun, Y. S., Um, J. G., Jiang, G. P., Lui, G., Yu, A. P., “Ultra-Large Sized Graphene Nano-Platelets (GnPs) Incorporated Polypropylene (PP)/GnPs Composites Engineered by Melt Compounding and its Thermal, Mechanical, and Electrical Properties”, Composites Part B, 133, 218225 (2018) 10.1016/j.compositesb.2017.09.028 Search in Google Scholar

20 Kasaliwal, G. R., Pegel, S., Goldel, A., Potschke, P. and Heinrich, G., “Analysis of Agglomerate Dispersion Mechanisms of Multiwalled Carbon Nanotubes during Melt Mixing in Polycarbonate”, Polymer, 51, 27082720 (2010) 10.1016/j.polymer.2010.02.048 Search in Google Scholar

21 Khayat, R. E., Luciani, A., Utracki, L. A., Godbille, F. and Picot, J., “Influence of Shear and Elongation on Drop Deformation In Convergent-Divergent Flows”. Int. J. Multiphase Flow.26, 1744 (2000) 10.1016/S0301-9322(98)00083-4 Search in Google Scholar

22 Kim, H., Abdala, A. A. and Macosko, C. W., “Graphene/Polymer Nanocomposites”, Macromolecules, 43, 65156530 (2010) 10.1021/ma100572e Search in Google Scholar

23 Kohlgruber, K., Bierdel, M.: Co-Rotating Twin-Screw Extruders: Fundamentals, Technology, nd Applications, Hanser Publishers, Munich (2008) 10.3139/9783446433410.fm Search in Google Scholar

24 Laforgue, A., Champagne, M. F., Dumas, J. and Robitaille, L., “Melt-Processing and Properties of Coaxial Fibers Incorporating Carbon Nanotubes”, J. Eng. Fibers Fabr., 7, 11812410.1177/155892501200700316 Search in Google Scholar

25 Liang, J., Yang, Q. Q., “Aggregate Structure and Percolation Behavior in Polymer/Carbon Black Conductive Composites”, J. Appl. Phys., 102, 083508 (2007) 10.1063/1.2795674 Search in Google Scholar

26 Liang, J. Z., “Effects of Graphene Nano-Platelets Size and Content on Tensile Properties of Polypropylene Composites at Higher Tension Rate”, J. Compos. Mater., 52, 24432450 (2018) 10.1177/0021998317746478 Search in Google Scholar

27 Luciani, A., Utracki, L.A., “The Extensional Flow Mixer, EFM”, Int. Polym. Proc., 11, 299309 (1996) 10.3139/217.960299 Search in Google Scholar

28 Manas-Zloczower, I.: Mixing and Compounding of Polymers: Theory and Practice, 2nd Edition, Hanser, Munich, Cincinnati (2009) 10.3139/9783446433717 Search in Google Scholar

29 Matsumoto, K., Kayamori, N., Tanaka, T. and Arao, Y., “The Optimization of Blister Disk Geometry for Mixing Performance in Co-Rotating Twin-Screw Extruder”, AIP Conference Proceeding, 1664, 020006 (2015) 10.1063/1.4918386 Search in Google Scholar

30 Moniruzzaman, M., Winey, K. I., “Polymer Nanocomposites Containing Carbon Nanotubes”, Macromolecules, 39, 51945205 (2006) 10.1021/ma060733p Search in Google Scholar

31 Nguyen, X. Q., Utracki, L. A., U. S. Patent 5 451 106 (1995) Search in Google Scholar

32 Novais, R. M., Covas, J. A. and Paiva, M. C., “The Effect of Flow Type and Chemical Functionalization on the Dispersion of Carbon Nanofiber Agglomerates in Polypropylene”, Composites Part A, 43, 833841 (2012) 10.1016/j.compositesa.2012.01.017 Search in Google Scholar

33 Ober, T. J., Haward, S. J., Pipe, C. J., Soulages, J. and McKinley, G.H., “Microfluidic Extensional Rheometry Using a Hyperbolic Contraction Geometry”, Rheol. Acta, 52, 529546 (2013) 10.1007/s00397-013-0701-y Search in Google Scholar

34 Potschke, P., Bhattacharyya, A. R. and Janke, A., “Melt Mixing of Polycarbonate with Multiwalled Carbon Nanotubes: Microscopic Studies on the State of Dispersion”, Eur. Polym. J., 40, 137148 (2004) 10.1016/j.eurpolymj.2003.08.008 Search in Google Scholar

35 Ren, Y. J., Zhang, Y. F., Fang, H. M., Ding, T. P., Li, J. L. and Bai, S. L., “Simultaneous Enhancement on Thermal and Mechanical Properties of Polypropylene Composites Filled with Graphite Platelets and Graphene Sheets”, Composites Part A, 112, 5763 (2018) 10.1016/j.compositesa.2018.05.017 Search in Google Scholar

36 Rondin, J., Bouquey, M., Muller, R., Serra, C. A., Martin, G. and Sonntag, P., “Dispersive Mixing Efficiency of an Elongational Flow Mixer on PP/EPDM Blends: Morphological Analysis and Correlation with Viscoelastic Properties”, Polym. Eng. Sci., 54, 14441457 (2014) 10.1002/pen.23667 Search in Google Scholar

37 Rwei, S. P., Manas-Zloczower, I. and Feke, D. L., “Observation of Carbon-Black Agglomerate Dispersion in Simple Shear Flows”, Polym. Eng. Sci., 30, 701706 (1990) 10.1002/pen.760301202 Search in Google Scholar

38 Rwei, S. P., Manas-Zloczower, I. and Feke, D. L., “Characterization of Agglomerate Dispersion by Erosion in Simple Shear Flows”, Polym. Eng. Sci., 31, 558562 (1991) 10.1002/pen.760310804 Search in Google Scholar

39 Rwei, S. P., Manas-Zloczower, I. and Feke, D. L., “Analysis of Dispersion of Carbon-Black in Polymeric Melts and its Effect on Compound Properties”, Polym. Eng. Sci., 32, 130135 (1992) 10.1002/pen.760320209 Search in Google Scholar

40 Spitalsky, Z., Tasis, D., Papagelis, K. and Galiotis, C., “Carbon Nanotube-Polymer Composites: Chemistry, Processing, Mechanical and Electrical Properties”, Prog. Polym. Sci., 35, 357401 (2010) 10.1016/j.progpolymsci.2009.09.003 Search in Google Scholar

41 Tokihisa, M., Yakemoto, K., Sakai, T., Utracki, L. A., Sepehr, M., Li, J. and Simard, Y., “Extensional Flow Mixer for Polymer Nanocomposites”, Polym. Eng. Sci., 46, 10401050 (2006) 10.1002/pen.20542 Search in Google Scholar

42 Vilaverde, C., Santos, R. M., Paiva, M. C. and Covas, J. A., “Dispersion and Re-Agglomeration of Graphite Nanoplates in Polypropylene Melts under Controlled Flow Conditions”, Composites Part A, 78, 143151 (2015) 10.1016/j.compositesa.2015.08.010 Search in Google Scholar

43 Villmow, T., Kretzschmar, B. and Potschke, P., “Influence of Screw Configuration, Residence Time, and Specific Mechanical Energy in Twin-Screw Extrusion of Polycaprolactone/Multi-Walled Carbon Nanotube Composites”, Compos. Sci. Technol., 70, 20452055. (2010) 10.1016/j.compscitech.2010.07.021 Search in Google Scholar

44 Villmow, T., Potschke, P., Pegel, S., Haussler, L. and Kretzschmar, B., “Influence of Twin-Screw Extrusion Conditions on the Dispersion of Multi-Walled Carbon Nanotubes in a Poly(lactic acid) Matrix”, Polymer, 49, 35003509. (2008) 10.1016/j.polymer.2008.06.010 Search in Google Scholar

45 Wang, N. H., Sakai, T. and Hashimoto, N., “Pumping Characteristics of an Intermeshing Co-Rotating Twin-Screw Extruder”, Int. Polym. Proc., 13, 2732 (1998) 10.3139/217.980027 Search in Google Scholar

46 Yang, H. H., Manas-Zloczower, I., “Flow Field Analysis of the Kneading Disk Region in a Co-Rotating Twin-Screw Extruder”, Polym. Eng. Sci., 32, 14111417 (1992) 10.1002/pen.760321903 Search in Google Scholar

47 Zebarjad, S. M., Tahani, M. and Sajjadi, S. A., “Influence of Filler Particles on Deformation and Fracture Mechanism of Isotactic Polypropylene”, J. Mater. Process Tech., 155, 14591464 (2004) 10.1016/j.matprotec.2004.04.187 Search in Google Scholar

Received: 2019-10-10
Accepted: 2020-03-19
Published Online: 2020-06-22
Published in Print: 2020-07-03

© 2020, Carl Hanser Verlag, Munich