Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 30, 2020

Poly(lactic acid)/Acrylonitrile Butadiene Styrene Nanocomposites with Hybrid Graphene Nanoplatelet/Organomontmorillonite: Effect of Processing Temperatures

  • M. Bijarimi , A. Syuhada , N. Zulaini , N. Shahadah , W. Alhadadi , M. N. Ahmad , A. Ramli and E. Normaya


This work reports the preparation and characterization of poly(lactic) acid/acrylonitrile butadiene styrene/graphene nanoplatelets/Cloisite C20A montmorillonite (PLA/ABS/GnP/C20A) nanocomposites via melt blending. The clay is hybridized with graphene to increase its dispersion in the polymer matrix. The melt processing temperatures play a vital role in the properties of the resulting nanocomposites in dictating the extent of thermal stability and dispersion of the fillers. The hybrid nanocomposites were characterized for stress-strain, thermal, chemical, and morphological properties. The findings were that there was an increase in the mechanical properties in terms of tensile strength and Young's modulus with the PLA/ABS/GnP/C20A at the high-temperature profile having the highest values of 43.1 MPa and 2533 MPa. The elongation at break increases slightly, due to the brittle properties of GnP. It was found that the dispersion of the fillers increased with increasing temperature profiles, as revealed by the morphological analysis by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The void size was also observed to be smaller and more homogenous with increasing temperature. However, in terms of thermal degradation analysis, the addition of fillers increases its thermal stability as the decomposition onset temperature increases by 22.5°C.

Correspondence address, Mail address: Mohd Bijarimi Mat Piah, Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia, E-mail:


Alexandre, M., Dubois, P., “Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials”, Mater. Sci. Eng., R, 28, 163 (2000) 10.1016/S0927-796X(00)00012-7Search in Google Scholar

Arroyo, O. H., Huneault, M. A., Favis, B. D. and Bureau, M. N., “Processing and Properties of PLA/Thermoplastic Starch/Montmorillonite Nanocomposites”, Polym. Compos., 31, 114127 (2010) 10.1002/pc.20774Search in Google Scholar

Bijarimi, M., Ahmad, S. and Alam, A. K. M. M., “Toughening Effect of Liquid Natural Rubber on the Morphology and Thermo-Mechanical Properties of the Poly(lactic acid) Ternary Blend”, Polymer Bull., 74, 33013317 (2017) 10.1007/s00289-016-1889-7Search in Google Scholar

Bijarimi, M., Ahmad, S. and Rasid, R., “Melt Blends of Poly(lactic acid)/Natural Rubber and Liquid Epoxidised Natural Rubber”, J. Rubber Res., 17, 5768 (2014)Search in Google Scholar

Bijarimi, M., Amirul, M., Norazmi, M., Ramli, A., Desa, M. S. Z., Desa, M. A. and Abu Samah, M. A., “Preparation and Characterization of Poly(lactic acid) (PLA)/Polyamide 6 (PA6)/Graphene Nanoplatelet (GNP) Blends Bio-Based Nanocomposites”, Mater. Res. Express, 6, 055044 (2019) 10.1088/2053-1591/ab05a3Search in Google Scholar

Bijarimi, M., Shahadah, N., Ramli, A., Nurdin, S., Alhadadi, W., Muzakkar, M. Z. and Jaafar, J., “Poly(lactic acid) (PLA)/Acrylonitrile Butadiene Styrene (ABS) with Graphene Nanoplatelet (GNP) Nanocomposites”, Indonesian Journal of Chemistry, 20, 276281 (2020) 10.22146/ijc.40880Search in Google Scholar

Bitinis, N., Verdejo, R., Maya, E. M., Espuche, E., Cassagnau, P. and Lopez-Manchado, M. A., “Physicochemical Properties of Organoclay Filled Polylactic Acid/Natural Rubber Blend Bionanocomposites”, Compos. Sci. Technol., 72, 305313 (2012) 10.1016/j.compscitech.2011.11.018Search in Google Scholar

Bouakaz, B. S., Habi, A., Grohens, Y. and Pillin, I., “Organomontmorillonite/Graphene-PLA/PCL Nanofilled Blends: New Strategy to Enhance the Functional Properties of PLA/PCL Blend”, Appl. Clay Sci., 139, 8191 (2017) 10.1016/j.clay.2017.01.014Search in Google Scholar

Bouakaz, B. S., Pillin, I., Habi, A. and Grohens, Y., “Synergy between Fillers in Organomontmorillonite/Graphene–PLA Nanocomposites”, Appl. Clay Sci., 116–117, 6977 (2015) 10.1016/j.clay.2015.08.017Search in Google Scholar

Cao, Y., Feng, J. and Wu, P., “Preparation of Organically Dispersible Graphene Nanosheet Powders through a Lyophilization Method and their Poly(lactic acid) Composites”, Carbon, 48, 38343839 (2010) 10.1016/j.carbon.2010.06.048Search in Google Scholar

Chieng, B., Ibrahim, N., Yunus, W., Hussein, M., Then, Y. and Loo, Y., “Effects of Graphene Nanoplatelets and Reduced Graphene Oxide on Poly(lactic acid) and Plasticized Poly(lactic acid): A Comparative Study”, Polymers, 6, 22322232 (2014) 10.3390/polym6082232Search in Google Scholar

Choe, I.-J., Lee, J. H., Yu, J. H. and Yoon, J.-S., “Mechanical Properties of Acrylonitrile–Butadiene–Styrene Copolymer/Poly(L-lactic acid) Blends and their Composites”, J. Appl. Polym. Sci., 131, 40329 (2014) 10.1002/app.40329Search in Google Scholar

Coiai, S., Cicogna, F., De Santi, A., Pérez Amaro, L., Spiniello, R., Signori, F., Fiori, S., Oberhauser, W. and Passaglia, E., “MMT and LDH Organo-Modification with Surfactants Tailored for PLA Nanocomposites”, eXPRESS Polym. Lett., 11, 163175 (2017) 10.3144/expresspolymlett.2017.18Search in Google Scholar

Dong, W., He, M., Wang, H., Ren, F., Zhang, J., Zhao, X. and Li, Y., “PLLA/ABS Blends Compatibilized by Reactive Comb Polymers: Double Tg Depression and Significantly Improved Toughness”, ACS Sustainable Chem. Eng., 3, 25422550 (2015) 10.1021/acssuschemeng.5b00740Search in Google Scholar

Fayt, R., Hadjiandreou, P. and Teyssie, P., “Molecular Design of Multicomponent Polymer Systems. VII. Emulsifying Effect of Poly-(ethylene–B–styrene) Copolymer in High-Density Polyethylene/Polystyrene Blends”, J. Polym. Sci., Part A: Polym. Chem., 23, 337342 (1985) 10.1002/pol.1985.170230209Search in Google Scholar

Fu, Y., Liu, L., Zhang, J. and Hiscox, W. C., “Functionalized Graphenes with Polymer Toughener as Novel Interface Modifier for Property-Tailored Polylactic Acid/Graphene Nanocomposites”, Polymer, 55, 63816389 (2014) 10.1016/j.polymer.2014.10.014Search in Google Scholar

Fukushima, K., Murariu, M., Camino, G. and Dubois, P., “Effect of Expanded Graphite/Layered-Silicate Clay on Thermal, Mechanical and Fire Retardant Properties of Poly(lactic acid)”, Polym. Degrad. Stab., 95, 10631076 (2010) 10.1016/j.polymdegradstab.2010.02.029Search in Google Scholar

Gao, Y., Picot, O. T., Bilotti, E. and Peijs, T., “Influence of Filler Size on the Properties of Poly(lactic acid) (PLA)/Graphene Nanoplatelet (GNP) Nanocomposites”, Eur. Polym. J., 86, 117131 (2017) 10.1016/j.eurpolymj.2016.10.045Search in Google Scholar

Gonçalves, C., Pinto, A., Machado, A. V., Moreira, J., Gonçalves, I. C. and Magalhães, F., “Biocompatible Reinforcement of Poly(lactic acid) with Graphene Nanoplatelets”, Polym. Compos., 39, E308E320 (2016) 10.1002/pc.24050Search in Google Scholar

Ito, E. N., Pessan, L. A., Covas, J. A. and Hage, E., “Analysis of the Morphological Development of PBT/ABS Blends during the Twin Screw Extrusion and Injection Molding Processes”, Int. Polym. Proc., 18, 376381 (2003) 10.3139/217.1780Search in Google Scholar

Jalalvandi, E., Majid, R., Ghanbari, T. and Ilbeygi, H., “Effects of Montmorillonite (MMT) on Morphological, Tensile, Physical Barrier Properties and Biodegradability of Polylactic Acid/Starch/MMT Nanocomposites”, J. Thermoplast. Compos. Mater., 28, 496509 (2015) 10.1177/0892705713486129Search in Google Scholar

Keramati, M., Ghasemi, I., Karrabi, M., Azizi, H. and Sabzi, M., “Incorporation of Surface Modified Graphene Nanoplatelets for Development of Shape Memory PLA Nanocomposite”, Fibers Polym., 17, 10621068 (2016) 10.1007/s12221-016-6329-7Search in Google Scholar

Li, S., Li, Z., Burnett, T. L., Slater, T. J. A., Hashimoto, T. and Young, R. J., “Nanocomposites of Graphene Nanoplatelets in Natural Rubber: Microstructure and Mechanisms of Reinforcement”, J. Mater. Sci., 52, 95589572 (2017) 10.1007/s10853-017-1144-0Search in Google Scholar

Li, Y., Shimizu, H., “Improvement in Toughness of Poly(L-lactide) (PLLA) through Reactive Blending with Acrylonitrile–Butadiene–Styrene Copolymer (ABS): Morphology and Properties”, Eur. Polym. J., 45, 738746 (2009) 10.1016/j.eurpolymj.2008.12.010Search in Google Scholar

Liang, J., Huang, Y., Zhang, L., Wang, Y., Ma, Y., Cuo, T. and Chen, Y., “Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites”, Adv. Funct. Mater., 19, 22972302 (2009) 10.1002/adfm.200801776Search in Google Scholar

Ma, H., Wang, J. and Fang, Z., “Cross-Linking of a Novel Reactive Polymeric Intumescent Flame Retardant to ABS Copolymer and its Flame Retardancy Properties”, Polym. Degrad. Stab., 97, 15961605 (2012) 10.1016/j.polymdegradstab.2012.06.030Search in Google Scholar

Manafi, P., Ghasemi, I., Karrabi, M., Azizi, H. and Ehsaninamin, P., “Effect of Graphene Nanoplatelets on Crystallization Kinetics of Poly(lactic acid)”, Soft Mater., 12, 433444 (2014) 10.1080/1539445X.2014.959598Search in Google Scholar

Nofar, M., Sacligil, D., Carreau, P. J., Kamal, M. R. and Heuzey, M.-C., “Poly(lactic acid) Blends: Processing, Properties and Applications”, Int. J. Biol. Macromol., 125, 307360 (2019) PMid:30528997; 10.1016/j.ijbiomac.2018.12.002Search in Google Scholar PubMed

Pinto, A. M., Gonçalves, C., Gonçalves, I. C. and Magalhães, F. D., “Effect of Biodegradation on Thermo-Mechanical Properties and Biocompatibility of Poly(lactic acid)/Graphene Nanoplatelets Composites”, Eur. Polym. J., 85, 431444 (2016) 10.1016/j.eurpolymj.2016.10.046Search in Google Scholar

Pluta, M., Paul, M. A., Alexandre, M. and Dubois, P., “Plasticized Polylactide/Clay Nanocomposites. I. The Role of Filler Content and its Surface Organo-Modification on the Physico-Chemical Properties”, J. Polym. Sci., Part B: Polym. Phys., 44, 299311 (2006) 10.1002/polb.20694Search in Google Scholar

Sabzi, M., Jiang, L. and Nikfarjam, N., “Graphene Nanoplatelets as Rheology Modifiers for Polylactic Acid: Graphene Aspect-Ratio-Dependent Nonlinear Rheological Behavior”, Ind. Eng. Chem. Res., 54, 81758182 (2015) 10.1021/acs.iecr.5b01863Search in Google Scholar

Scaffaro, R., Botta, L., Maio, A. and Gallo, G., “PLA Graphene Nanoplatelets Nanocomposites: Physical Properties and Release Kinetics of an Antimicrobial Agent”, Composites Part B, 109, 138146 (2017) 10.1016/j.compositesb.2016.10.058Search in Google Scholar

Scaffaro, R., Botta, L., Maio, A., Mistretta, M. C. and La Mantia, F. P., “Effect of Graphene Nanoplatelets on the Physical and Antimicrobial Properties of Biopolymer-Based Nanocomposites”, Materials, 9, 351 (2016) 10.3390/ma9050351Search in Google Scholar PubMed PubMed Central

Sharma, N., Alam, S. N., Ray, B. C., Yadav, S. and Biswas, K., “Silica-Graphene Nanoplatelets and Silica-MWCNT Composites: Microstructure and Mechanical Properties”, Diamond Relat. Mater., 87, 186201 (2018) 10.1016/j.diamond.2018.06.009Search in Google Scholar

Stenvall, E., Tostar, S., Boldizar, A. and Foreman, M. R. S. J., “The Influence of Extrusion Conditions on Mechanical and Thermal Properties of Virgin and Recycled PP, HIPS, ABS and their Ternary Blends”, Int. Polym. Proc., 28, 341549 (2013) 10.3139/217.2801Search in Google Scholar

Swinehart, D. F., “The Beer-Lambert Law”, J. Chem. Educ., 39, 333335 (1962) 10.1021/ed039p333Search in Google Scholar

Tiwari, R. R., Natarajan, U., “Effect of Organic Modifiers and Silicate Type on Filler Dispersion, Thermal, and Mechanical Properties of ABS-Clay Nanocomposites”, J. Appl. Polym. Sci., 110, 23742383 (2008) 10.1002/app.28699Search in Google Scholar

Vadori, R., Misra, M. and Mohanty, A. K., “Sustainable Biobased Blends from the Reactive Extrusion of Polylactide and Acrylonitrile Butadiene Styrene”, J. Appl. Polym. Sci., 133, 43771 (2016) 10.1002/app.43771Search in Google Scholar

Vadori, R., Misra, M. and Mohanty, A. K., “Statistical Optimization of Compatibilized Blends of Poly(lactic acid) and Acrylonitrile Butadiene Styrene”, J. Appl. Polym. Sci., 134, 44516 (2017) 10.1002/app.44516Search in Google Scholar

Wacharawichanant, S., Ounyai, C. and Rassamee, P., “Effects of Organoclay to Miscibility, Mechanical and Thermal Properties of Poly (lactic acid) and Propylene-Ethylene Copolymer Blends”, IOP Conf. Ser.: Mater. Sci. Eng., 223, 012016 (2017) 10.1088/1757-899X/223/1/012016Search in Google Scholar

Wu, N., Zhang, H., “Toughening of Poly(L-lactide) Modified by a Small Amount of Acrylonitrile–Butadiene–Styrene Core-Shell Copolymer”, J. Appl. Polym. Sci., 132, 42554 (2015) 10.1002/app.42554Search in Google Scholar

Yeh, J. M., Chen, C. L., Huang, C. C., Chang, F. C., Chen, S. C., Su, P. L., Kuo, C. C., Hsu, J. T., Chen, B. and Yu, Y. H., “Effect of Organoclay on the Thermal Stability, Mechanical Strength, and Surface Wettability of Injection-Molded ABS-Clay Nanocomposite Materials Prepared by Melt Intercalation”, J. Appl. Polym. Sci., 99, 15761582 (2006) 10.1002/app.22329Search in Google Scholar

Young, R. J., Liu, M., Kinloch, I. A., Li, S., Zhao, X., Vallés, C. and Papageorgiou, D. G., “The Mechanics of Reinforcement of Polymers by Graphene Nanoplatelets”, Compos. Sci. Technol., 154, 110116 (2018) 10.1016/j.compscitech.2017.11.007Search in Google Scholar

Received: 2020-01-12
Accepted: 2020-05-02
Published Online: 2020-07-30
Published in Print: 2020-08-13

© 2020, Carl Hanser Verlag, Munich

Downloaded on 25.2.2024 from
Scroll to top button