Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 22, 2020

Experimental and Numerical Investigation on Indentation of Orthotropic Microplates with Finite Thickness

A. Melaibari , A. Wagih and M. A. Eltaher


This article presents comparative experimental and numerical studies to investigate the deformation and contact force of orthotropic microplates under indentation test. A simple model is developed to obtain the 3D homogenized elastic properties of orthotropic materials. In the FE simulation, the microplate is assumed to be a fully elastic orthotropic composite, and the indenter is a rigid body. Experimental indentation test is performed to obtain load-displacement curve, indentation profile, and maximum indentation depth. The numerical studies are performed to investigate the effect of indenter radius, material orthotropy, and microplate thickness on deformation of microplate under indentation load and contact pressure. The numerical model is applied to simulate two different load conditions: microplate rested on a fully supported rigid fixture, and microplate rested on a hollow support rigid fixture with circular cut-out. Numerical and experimental studies achieve excellent agreement and good correlation proving the validity of the proposed homogenization model. These parametric studies proved that the indentation behavior of orthotropic laminated structures is material independent and it depends greatly on the plate thickness.

*Correspondence address, Mail address: Ammar Melaibari, Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University (KAU), P.O. Box 80204, Jeddah, Saudi Arabia, E-mail:


1 Alinia, Y., Zakerhaghighi, H., Adibnazari, S. and Güler, M. A., “Rolling Contact Problem for an Orthotropic Medium”, Acta Mech., 228, 447464 (2017) 10.1007/s00707-016-1718-ySearch in Google Scholar

2 Alonso, L., Navarro, C. and García-Castillo, S. K., “Analytical Models for the Perforation of Thick and Thin Thickness Woven-Laminates Subjected to High-Velocity Impact”, Composites Part B, 143, 292300 (2018) 10.1016/j.compositesb.2018.01.030Search in Google Scholar

3 Asemi, K., Salami, S. J., “A Study on Low Velocity Impact Response of FGM Rectangular Plates with 3D Elasticity Based Graded Finite Element Modeling”, Journal of Theoretical and Applied Mechanics, 53, 859872 (2015) 10.15632/jtam-pl.53.4.859Search in Google Scholar

4 Asiri, S., Wagih, A. and Eltaher, M. A., “Predictive Model for Spherical Indentation on Elastoplastic Nanocomposites: Loading and Unloading Behavior”, Ceram. Int., 45, 30883100 (2019) 10.1016/j.ceramint.2018.10.199Search in Google Scholar

5 Chao, C. C., Tu, C. Y., “Three-Dimensional Contact Dynamics of Laminated Plates: Part 1. Normal Impact”, Composites Part B, 30, 922 (1999) 10.1016/S1359-8368(98)00038-9Search in Google Scholar

6 Chen, P., Xiong, J. and Shen, Z., “Thickness Effect on the Contact Behavior of a Composite Laminate Indented by a Rigid Sphere”, Mech. Mater., 40, 183194 (2008) 10.1016/j.mechmat.2007.07.003Search in Google Scholar

7 Comez, I., Yilmaz, K. B., Güler, M. A. and Yildirim, B., “On the Plane Frictional Contact Problem of a Homogeneous Orthotropic Layer Loaded by a Rigid Cylindrical Stamp”, Archive of Applied Mechanics, 89, 14031419 (2019) 10.1007/s00419-019-01511-6Search in Google Scholar

8 Eltaher, M. A., Wagih, A., “Micromechanical Modeling of Damage in Elasto-Plastic Nanocomposites Using Unit Cell Representative Volume Element and Cohesive Zone Model”, Ceram. Int., 46, 1046910480 (2020) 10.1016/j.ceramint.2020.01.046Search in Google Scholar

9 Flores-Johnson, E. A., Li, Q. M., “Experimental Study of the Indentation of Sandwich Panels with Carbon Fibre-Reinforced Polymer Face Sheets and Polymeric Foam Core”, Composites Part B, 42, 12121219 (2011) 10.1016/j.compositesb.2011.02.013Search in Google Scholar

10 Gan, K. W., Wisnom, M. R. and Hallett, S. R., “An Approximate Model of Cylindrical and Spherical Contact on Composite Laminates of Finite Thickness”, Compos. Struct., 103, 136142 (2013) 10.1016/j.compstruct.2013.04.004Search in Google Scholar

11 Hertz, H.: Miscellaneous Papers, Macmillan, London, p. 146183 (1896)Search in Google Scholar

12 Iriondo, J., Aretxabaleta, L. and Aizpuru, A., “Dynamic Characterisation and Modelling of the Orthotropic Self-Reinforced Polypropylene Used in Alternative FMLs”, Compos. Struct., 153, 682691 (2016) 10.1016/j.compstruct.2016.06.049Search in Google Scholar

13 Johnson, K. L., Johnson, K. L.: Contact Mechanics, Cambridge University Press, Cambridge, UK (1987)Search in Google Scholar

14 Kim, J. S., Han, J. W. and Cho, M., “Boundary Layer State Prediction of Composite and Sandwich Plates via an Enhanced Higher-Order Shear Deformation Theory”, Compos. Struct., 153, 928937 (2016) 10.1016/j.compstruct.2016.07.006Search in Google Scholar

15 Krysko, V. A., Yakovleva, T. V., Papkova, I. V., Saltykova, O. A. and Pavlov, S. P., “The Contact Interaction of Size-Dependent and Multimodulus Rectangular Plate and Beam”, J. Phys. Conf. Ser., 1158, 17 (2019) 10.1088/1742-6596/1158/3/032021Search in Google Scholar

16 Lee, S. M., Tsotsis, T. K., “Indentation Failure Behavior of Honeycomb Sandwich Panels”, Compos. Sci. Technol., 60, 11471159 (2000) 10.1016/S0266-3538(00)00023-3Search in Google Scholar

17 Li, M., Ru, C. Q. and Gao, C. F., “Axisymmetric Indentation of an Elastic Thin Plate by a Rigid Sphere Revisited”, J. Appl. Math. Mech., 98, 14361446 (2018) 10.1002/zamm.201700266  Search in Google Scholar

18 Sankar, B. V., “Smooth Indentation of Orthotropic Beams”, Compos. Sci. Technol., 34, 95111 (1989) 10.1016/0266-3538(89)90099-7Search in Google Scholar

19 Shariyat, M., Farzan, F., “Nonlinear Eccentric Low-Velocity Impact Analysis of a Highly Prestressed FGM Rectangular Plate, Using A Refined Contact Law”, Archive of Applied Mechanics, 83, 623641 (2013) 10.1007/s00419-012-0708-3Search in Google Scholar

20 Sutherland, L. S., Soares, C. G., “Contact Indentation of Marine Composites”, Compos. Struct., 70, 287294 (2005) 10.1016/j.compstruct.2004.08.035Search in Google Scholar

21 Swanson, S. R., “Hertzian Contact of Orthotropic Materials”, Int. J. Solids Struct., 41, 19451959 (2004) 10.1016/j.ijsolstr.2003.11.003Search in Google Scholar

22 Swanson, S. R., “Contact Deformation and Stress in Orthotropic Plates”, Composites Part A, 36, 14211429 (2005) 10.1016/j.compositesa.2004.11.011Search in Google Scholar

23 Turner, J. R., “Contact on a Transversely Isotropic Half-Space, or between Two Transversely Isotropic Bodies”, Int. J. Solids Struct., 16, 409419 (1980) 10.1016/0020-7683(80)90039-6Search in Google Scholar

24 Wagih, A., Maimí, P., Blanco, N. and Trias, D., “Predictive Model for the Spherical Indentation of Composite Laminates with Finite Thickness”, Compos. Struct., 153, 468477 (2016) 10.1016/j.compstruct.2016.06.056Search in Google Scholar

25 Wagih, A., Fathy, A., “Experimental Investigation and FE Simulation of Spherical Indentation on Nano-Alumina Reinforced Copper-Matrix Composite Produced by Three Different Techniques”, Adv. Powder Technol., 28, 19541965 (2017) 10.1016/j.apt.2017.05.005Search in Google Scholar

26 Wagih, A., Fathy, A., Ibrahim, D., Elkady, O. and Hassan, M., “Experimental Investigation on Strengthening Mechanisms in Al-SiC Nanocomposites and 3D FE Simulation of Vickers Indentation”, J. Alloys Compd., 752, 137147 (2018) 10.1016/j.jallcom.2018.04.167Search in Google Scholar

27 Wagih, A., Attia, M. A., Abdelrahman, A. A., Bendine, K. and Sebaey, T. A., “On the Indentation of Elastoplastic Functionally Graded Materials”, Mech. Mater., 129, 169188 (2019a) 10.1016/j.mechmat.2018.11.012Search in Google Scholar

28 Wagih, A., Maimí, P., Blanco, N. and González, E. V., “Scaling Effects of Composite Laminates under Out-Of-Plane Loading”, Composites Part A, 116, 112 (2019b) 10.1016/j.compositesa.2018.10.001Search in Google Scholar

Received: 2020-01-25
Accepted: 2020-04-01
Published Online: 2020-06-22
Published in Print: 2020-07-03

© 2020, Carl Hanser Verlag, Munich

Downloaded on 3.12.2022 from
Scroll Up Arrow