Abstract
The creep crack growth and the fractal dimension of grain-boundary fracture (Df or D̄f ) were examined using surface notched specimens with different fractal dimensions of the grain boundaries (Dgb) in austenitic 21Cr–4Ni–9Mn steel. The value of Df estimated in the scale range larger than about one grain-boundary length decreased with crack growth and with increasing bulk stress (gross section stress), while the value of Df was higher in the specimen with higher Dgb value. The value of D̄f estimated in the scale range smaller than about one grain-boundary length was close to the value of Dgb in each specimen and did not change with crack growth and with the bulk stress (gross section stress). The growth rate of creep crack was lower and the threshold stress intensity factor for crack growth was higher in the specimen with the higher Dgb value.
Abstract
Das Wachstum von Kriechrissen und die Fraktaldimension des Korngrenzenbruchs (Df oder D̄f ) wurden an oberflächlich gekerbten Proben mit unterschiedlichen Fraktal-dimensionen der Korngrenzen (Dgb) im austenitischen 21Cr–4Ni–9Mn Stahl untersucht. Der Df-Wert, der im Meßbereich größer als ungefähr eine Korngrenzlänge abgeschätzt wurde, nahm mit dem Rißwachstum und mit der Zunahme der Großabschnittspannung (bulk stress) ab, obwohl der Df-Wert höher in der Probe mit höherem Dgb-Wert war. Der D̄f-Wert, der im Meßbereich kleiner als ungefähr eine Korngrenzlänge äbgeschätzt wurde, war in der Nähe des Dgb-Wertes in der einzelnen Probe und veränderte sich nicht mit dem Rißwachstum und mit der Großabschnittspannung (bulk stress). Die Wachstumsgeschwindigkeit des Kriechrisses war niedriger und die Schwellspannungsintensität des Rißwachstums war höher in der Probe mit höherem Dgb-Wert.
Literature
1 Mandelbrot, B.B.: The Fractal Geometry of Nature, translated by H. Hironaka, Nikkei Science, Tokyo (1980).Search in Google Scholar
2 Mandelbrot, B.B.; Passoja, D.E.; Paullay, A.J.: Nature 308 (1984) 721 – 722.10.1038/308721a0Search in Google Scholar
3 Takayasu, H.: Fractals in the Physical Sciences, Manchester University Press, Manchester, New York (1990).Search in Google Scholar
4 Hornbogen, E.: Z. Metallkd. 78 (1987) 622 – 625.Search in Google Scholar
5 Hornbogen, E.: Inter. Mater. Rev. 34 (1989) 277 – 296.10.1179/imr.1989.34.1.277Search in Google Scholar
6 Streitenberger, P.; Förster, D.; Kolbe, G.; Veit, P.: Scripta metall. mater. 33 (1995) 541 – 546.10.1016/0956-716X(95)00265-WSearch in Google Scholar
7 Milman, V.Y.; Stelmashenko, N.A.; Blumenfeld, R.: Progress in Mater. Sc. 38 (1994) 425 – 474.10.1016/0079-6425(94)90006-XSearch in Google Scholar
8 Bouchaud, E.: in: F. Family, P. Meakin, B. Sapoval and R. Wood (eds.), Fractal Aspect of Materials, MRS, Pittsburgh, (1995) 83 – 94.Search in Google Scholar
9 Drury, W.J.; Gokhale, A.M.: ASTM STP 1203, ASTM, Philadelphia (1993) 58 – 70.Search in Google Scholar
10 Tanaka, M.: Z. Metallkd. 84 (1993) 697 – 701.Search in Google Scholar
11 Tanaka, M.: J. Mater. Sc., to be published.Search in Google Scholar
12 Pande, C.S.; Richards, L.E.; Louat, N.; Dempsey, B.D.; Schwoeble, A.J.: Acta metall. 35 (1987) 1633 – 1637.10.1016/0001-6160(87)90110-6Search in Google Scholar
13 Banerji, K.: Metall. Trans. A 19A (1988) 961 – 971.10.1007/BF02628381Search in Google Scholar
14 Ishimura, S.; Ishimura, S.: Fractal Mathematics, Tokyo Tosho, Tokyo (1990).Search in Google Scholar
15 Tanaka, M.; Iizuka, H.; Ashihara, F.: J. Mater. Sc. 23 (1988) 3827 – 3832.10.1007/BF01106799Search in Google Scholar
16 Gokhale, A.M.; Drury,W.J.; Mishra, S.: ASTM STP 1203, ASTM, Philadelphia (1993) 3 – 22.Search in Google Scholar
17 Underwood, E.E.; Banerji, K.: Mater. Sc. Engn. 80 (1986) 1 – 14.10.1016/0025-5416(86)90297-1Search in Google Scholar
18 Dauskardt, R.H.; Haubensak, F.; Ritchie, O.: Acta metall. mater. 38 (1990) 143 – 159.10.1016/0956-7151(90)90043-GSearch in Google Scholar
19 Tanaka, M.; Miyagawa, O.; Sakaki, T.; Fujishiro, D.: J. Iron and Steel Inst. Japan 65 (1979) 939 – 948.10.2355/tetsutohagane1955.65.7_939Search in Google Scholar
20 Tanaka, M.; Miyagawa, O.; Sakaki, T.; Iizuka, H.; Ashihara, F.; Fujishiro, D.: J. Mater. Sc. 23 (1988) 621 – 628.10.1007/BF01174696Search in Google Scholar
21 Tanaka, M.: J. Mater. Sc. 27 (1992) 4717 – 4725.10.1007/BF01166012Search in Google Scholar
22 Tanaka, M.; Iizuka, H.: Z. Metallkd. 82 (1991) 442 – 447.Search in Google Scholar
23 Kiuchi, A.; Aoki, M.; Kobayashi, M.; Ikeda, K.: J. Iron and Steel Inst. Japan 68 (1982) 1830 – 1838.10.2355/tetsutohagane1955.68.13_1830Search in Google Scholar
24 Kitagawa, H.; Yuuki, R.: Trans. Japan Soc. Mech. Engn. 41 (1975) 1641 – 1649.10.1299/kikai1938.41.1641Search in Google Scholar
25 Ishida, M.: Trans. Japan Soc. Mech. Engn. 45 (1979) 306 – 317.10.1299/kikaia.45.306Search in Google Scholar
26 Suresh, S.: Metall. Trans. A 14A (1983) 2375 – 2385.10.1007/BF02663313Search in Google Scholar
27 Crossman, F.W.; Ashby, M.F.: Acta metall. 23 (1975) 425 – 440.10.1016/0001-6160(75)90082-6Search in Google Scholar
28 Langdon, T.G.; Vastava, R.B.: ASTM STP 765, ASTM, Philadelphia (1982) 435 – 451.Search in Google Scholar
29 Ashby, M.F.; Raj, R.; Gifkins, R.C.: Scripta metall. 4 (1970) 737 – 741.10.1016/0036-9748(70)90216-4Search in Google Scholar
30 Raj, R.; Ashby, M.F.: Metall. Trans. 2 (1971) 1113 – 1127.10.1007/BF02664244Search in Google Scholar
31 Ohtani, R.; Itoh, T.: J. Soc. Mater. Sc. Japan 20 (1971) 864 – 871.10.2472/jsms.20.864Search in Google Scholar
32 Ohji, K.; Ogura, K.; Nakano, T.: Trans. Japan Soc. Mech. Engn. 39 (1973) 822 – 832.10.1299/kikai1938.39.822Search in Google Scholar
33 Ohnami, M.; Umeda, K.; Awaya, Y.; Takeda, M.: Trans. Japan Soc. Mech. Engn. 42 (1976) 335 – 342.10.1299/kikai1938.42.335Search in Google Scholar
34 Tanaka, M.; Sakaki, T.; Fujita, H.: Trans. Iron and Steel Inst. Japan 22 (1982) 365 – 370.10.2355/isijinternational1966.22.365Search in Google Scholar
35 Tanaka, M.: J. Mater. Sc. 28 (1993) 5753 – 5758.10.1007/BF00365177Search in Google Scholar
© 1997 Carl Hanser Verlag, München