Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 29, 2021

On Properties of Point Defects in Platinum

Über die Eigenschaften von atomaren Fehlstellen in Platin
Wolfgang Schüle

Abstract

Experimental results on properties of point defects in platinum which were obtained during the last forty-five years are discussed in the light of the modified two-interstitial model. After a low temperature irradiation correlated 〈100〉-split interstitial–vacancy pairs annihilate in recovery stages I and II with activation energies ranging from very small values up to the activation energy of migration of free 〈100〉-split interstitials of EIIM=0.73eV . Free 〈100〉-split interstitial recover in recovery stage III at about 300 K and vacancies in recovery stage IV at about 600 K. The recovery of vacancies after quenching is also observed in recovery stage IV and their activation energy of migration is EIVM=(1.37±0.02) eV . Di-vacancies obtained by quenching have an activation energy of migration of E2VM=1.1eV annihilating in a temperature range below that corresponding to the recovery stage IV range.

Correlated 〈100〉-crowdion–vacancy pairs and 〈100〉 crowdions recover in the recovery sub-stages ID and IE, respectively. The activation energy of migration of 〈100〉-crowdions is ECM=0.063 eV .

The increase of the electrical resistivity of platinum during irradiation with 1.85 MeV electrons from a Van de Graaff generator was measured in situ for various irradiation temperatures at and below the temperature region corresponding to the recovery stage III temperature region. The increase was very small and almost not detectable, because the electrical resistivity of a Frenkel defect decreases from ρ0 = 10 · 10–4 Ωcm at the temperature of liquid helium to very small values at ambient temperature. After large irradiation doses only vacancies were present which recovered during an anneal of 24 hours at 300 °C.

Abstract

Die Ergebnisse von Untersuchungen über Eigenschaften von atomaren Fehlstellen in Platin, die in den letzten 45 Jahren gewonnen wurden, werden im Zusammenhang des Modifizierten Zwei-Zwischengitteratom-Modells (MTIM) diskutiert. Korrelierte Zwischengitteratom-Leerstellen-Paare (〈100〉-split interstitial–vacancy pairs) heilen in den Erholungsstufen I und II nach einer Bestrahlung mit hochenergetischen Teilchen aus. Ihre Aktivierungsenergie nimmt von sehr kleinen Werten bis zu der Aktivierungsenergie der Wanderung von freien Zwischengitteratomen zu, die in der Erholungsstufe III bei etwa 300 K mit einer Aktivierungsenergie EIIM=0.73eV wandern und ausheilen. Freie Leerstellen wandern und heilen in der Erholungsstufe IV bei etwa 600 K aus. Nach Abschrecken wird das Ausheilen von Leerstellen ebenfalls in der Erholungsstufe IV beobachtet. Ihre Wanderungsaktivierungsenergie beträgt EIVM=(1.37±0.02) eV . Die Wanderungsaktivierungsenergie von Doppelleerstellen wurde ebenfalls nach dem Abschrecken bestimmt und es wurde ein Wert von E2VM=1.1eV gefunden.

Korrelierte 〈100〉-Crowdionen-Leerstellenpaare und freie 〈100〉-Crowdionen heilen in den Erholungsstufen ID und IE aus. Die Wanderungsaktivierungsenergie von 〈100〉-Crowdionen beträgt ECM=0.063 eV .

Die Zunahme des elektrischen Widerstands von Platin wurde während einer Bestrahlung mit 1.85 MeV Elektronen gemessen. Die Bestrahlungstemperaturen lagen etwa im Temperaturbereich der Erholungsstufe III. Die Zunahme des elektrischen Widerstands während einer Bestrahlung im Temperaturbereich zwischen – 90 und + 30 °C war sehr klein und nur sehr schwer meßbar, weil der elektrische Widerstand eines Frenkelpaares, der bei der Temperatur des flüssigen Heliums ρ0 = 10 · 10–4 Ωcm beträgt, mit zunehmender Meßtemperatur abnimmt und bei einer Temperatur von ca. 0 °C null Ωcm beträgt. Bei Bestrahlungstemperaturen zwischen – 90 und + 30 °C werden nach langen Bestrahlungszeiten fast nur Leerstellen gefunden, deren Konzentration linear mit der Bestrahlungszeit zunimmt.


W. Schüle Via Bosco 23 I-21038 Leggiuno (Va), Italy

  1. We would like to thank the Joint Research Centre Ispra, Italy, for the performance of the irradiation in the Van de Graaff generator.

Literature

1 van Bueren, H. G.: Z. Metallkd. 46 (1955) 272.Search in Google Scholar

2 Schüle, W.: International Conference on Diffusion in Metals and Alloys, DIMETA 88, September 5–9, 1988, Balatonfüred, Hungary, Defect and Diffusion Forum 66–69 (1989) 313.Search in Google Scholar

3 Schüle, W.: International Conference on Physics of Irradiation Effects in Metals, Siófok, Hungary, May 20 – 24, 1991, in: G. Szenes (ed.), Materials Science Forum 97–99 (1992) 133.Search in Google Scholar

4 Schüle, W.: Z. Metallkd. 85 (1994) 78.Search in Google Scholar

5 Gieb, M.; Heieck, J.; Schüle, W.: Proc. of the 17th Intern. Symp. on the Effects of Radiation on Materials, in: D. S. Gelles, R. K. Nanstad, A. S. Kumar, and E. A. Little (eds.), Sun Valley, Idaho, USA, June 22–26, 1994, American Society for Testing and Materials (ASTM), Philadelphia, J. Nucl. Mater. 225 (1995) 85.Search in Google Scholar

6 Schüle, W.: Proc. of the 17th Intern. Symp. on Effects of Radiation on Materials, in: D. S. Gelles, R. K. Nanstad, A. S. Kumar, and F. A. Little (eds.), Sun Valley, Idaho, USA, June 22–26, 1994, ASTM, Philadelphia, STP 1270, (1996) 874.Search in Google Scholar

7 Schüle, W.: Seventh Intern. Conf. on Fusion Reactor Materials, (ICFRM-7), in: V. M. Chernov, W. M. Gauster, D. S. Gelles, A. B. Hull, R. L. Klueh, H. Stamm (eds.), Obninsk, Kaluga Region, Russia, September 25–29, 1995, J. Nucl. Mater. 233–237 (1996) 964.Search in Google Scholar

8 Schüle, W.: as Ref. [7] 969.Search in Google Scholar

9 Schüle, W.: Druckzentrum der Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt am Main, Germany (1997).Search in Google Scholar

10 Kinchin, G. H.; Pease, R. S.: J. Nuclear Energy 1 (1955) 200.Search in Google Scholar

11 Silsbee, R. M.: J. Appl. Phys. 28 (1957) 1246.Search in Google Scholar

12 Leibfried, G.: J. Appl. Phys. 30 (1959) 1388.Search in Google Scholar

13 Gibson, J. B.; Goland, A. N.; Milgram, M.; Vineyard, G. H.: Phys. Rev. 120 (1960) 1229.Search in Google Scholar

14 Gilhaus, H.; Schüle, W.: Rad. Effects and Defects in Solids 138 (1996) 29.Search in Google Scholar

15 Schüle, W.: Proc. of the 18th Intern. Symp. on Effects of Radiation on Materials, in: R. K. Nanstad, M. L. Hamilton, F. A. Garner, and A. S. Kumar (eds.), Hyannis, Mass., USA, June 22–26, 1996, American Society for Testing and Materials (ASTM), Philadelphia, 1996, ASTM STP 1325 (1998).Search in Google Scholar

16 Dugdale, R. A.: Phil. Mag. 43 (1952) 912.Search in Google Scholar

17 Manintveld, J. A.: Thesis, Technische Hoge School Delft (1954).Search in Google Scholar

18 Bradshaw, F. J.; Pearson, S.: Phil. Mag. 1 (1956) 812.Search in Google Scholar

19 Kidson, G. V.; Ross, R.: Proc. Intern. Conf. Radioisotopes in Science and Research, Vol. 1 (1957) 185.Search in Google Scholar

20 Ascoli, A.; Asdente, M.; Germagnoli, E.; A. Manara, A.: J. Phys. Chem. Solids 6 (1958) 59.Search in Google Scholar

21 Bacchella, G. L.; Germagnoli, E.; Granata, S.: J. Appl. Phys. 30 (1959) 748.Search in Google Scholar

22 Piercy, G. R.: Phil. Mag. 5 (1960) 201.Search in Google Scholar

23 Bowden P. B.; Brandon, D. G.: Phil. Mag. 6 (1961) 707.Search in Google Scholar

24 Bowden, P. B.; Brandon, D. G.: Discussion Faraday Soc. 31 (1961) 70.Search in Google Scholar

25 Brandon, D. G.; Bowden, P. B.; Baker, A. J.: Properties of Reactor Materials and the Effect of Radiation Damage, Butterworth, London (1961) 120.Search in Google Scholar

26 Coltman, R. R.; Klabunde, C. E.; McDonald, D. L.; Redman, J. K.: J. Appl. Phys. 33 (1962) 3509.Search in Google Scholar

27 Cattaneo, F.; Germagnoli, E.: Phil. Mag. 7 (1962) 1373.Search in Google Scholar

28 Bowden, P. B.; Brandon, D. G.; Phil. Mag. 8 (1963) 935.Search in Google Scholar

29 Bowden, P B.; Brandon, D. G.: J. Nucl. Mater. 9 (1963) 348.Search in Google Scholar

30 Jackson, J. J.: Proc. of an Intern. Conf. on Lattice Defects in Quenched Metals, in: R.-M. J. Cotterill, M. Doyama, J. J. Jackson, and M. Meshii (eds.), Argonne National Laboratory, June 15–17, 1964, Academic Press, New York and London (1965) 467 and 479.Search in Google Scholar

31 Burger, G.: Thesis, Technische Hochschule München, Germany (1965).Search in Google Scholar

32 Bauer, W.; Sosin, A.: Phys. Rev. 147 (1966) 482.Search in Google Scholar

33 Jackson, J. J.; Herschbach, K.: Phys. Rev. 164 (1967) 951.Search in Google Scholar

34 Duesing, G.; Hemmerich, H.; Meissner, D.; Schilling, W.: phys. stat. sol. 23 (1967) 481.Search in Google Scholar

35 Bauer, W.; Goeppinger, W. F.: Phys. Rev. 154 (1967) 588.Search in Google Scholar

36 Coltman, R. R.; Klabunde, C. E.; Redman, J. K.: Phys. Rev. 156 (1967) 715.Search in Google Scholar

37 Herschbach, K.; Jackson, J. J.: Phys. Rev. 153 (1967) 694.Search in Google Scholar

38 Swanson, M. L.; phys. stat. sol. 23 (1967) 649.Search in Google Scholar

39 Polak, J.: Phys. Rev. Lett. 24 (1967) 649.Search in Google Scholar

40 Polak, J.: phys. stat. sol. 21 (1967) 581.Search in Google Scholar

41 Schumacher, D.; Seeger, A.; Härlin, O.: phys. stat. sol. 25 (1968) 359.Search in Google Scholar

42 Wittmaak, K.: Jül. Conf. 2, Vol. II (1968) 473.Search in Google Scholar

43 Miura, S.; Takamura, J.-I.; Ogasa, N.: Jül. Conf. 2, Vol. I (1968) 429.Search in Google Scholar

44 Rösch, K.; Bell, F.; Sizmann, R.: Jül. Conf. 2, Vol. II (1968) 444.Search in Google Scholar

45 Duesing, G.; Schilling, W.: Rad. Effects 1 (1969) 65.Search in Google Scholar

46 Duesing, G.: Thesis, Technische Hochschule Aachen, Germany (1969).Search in Google Scholar

47 Schilling, W.; Burger, G.; Isebeck, K.; Wenzl, H.: Vacancies and Interstitials in Metals, North Holland Publishing Company, Amsterdam (1969) 255.Search in Google Scholar

48 Dibbert, H.-J.: Report Jül.-731-FF (1971).Search in Google Scholar

49 Coltman, Jr., R. R.; Clabunde, C. E.; Redman, J. K.; Southern, A. L.: Phys. Rev. Lett. 26 (1971) 131.Search in Google Scholar

50 Doyama, M.; Koehler, J. S.; Lwin, Y. M.; Ryan, E. A.; Shaw, D. G.: Phys. Rev. B 4 (1971) 281.Search in Google Scholar

51 Dibbert, H.-J.; Sonnenberg, K.; Schilling, W.; Dedek, U.: Rad. Effects 15 (1972) 115.Search in Google Scholar

52 Sonnenberg, K.; Schilling, W.; Dibbert, H. J.; Mika, K.; Schroeder, K.: Rad. Effects 15 (1972) 129.Search in Google Scholar

53 Sonnenberg, K.; Schilling, W.; Mika, K.; Dettmann, K.: Rad. Effects 16 (1972) 65.Search in Google Scholar

54 Heigl, F.; Sizmann, R.: Crystal Lattice Defects 3 (1972) 13.Search in Google Scholar

55 Berger, A. S.; Seidmann, D. N.; Balluffi, R. W.: Acta Metall. 21 (1973) 123.Search in Google Scholar

56 Schilling, W.; Sonnenberg, K.: J. Phys. F: Metal Phys. 3 (1973) 322.Search in Google Scholar

57 Lwin, Y. N.; Brown, P. A.; Jackson, J. J.; Ryan, E. A.: phys. stat. sol (a) 25 (1974) 223.Search in Google Scholar

58 Zetts, J. S.; Bass, J.: Phil. Mag. 31 (1975) 419.Search in Google Scholar

59 Schilling, W.; Ehrhart, P.; Sonnenberg, K.: Proc. of an Intern. Conf. on Fundamental Aspects of Radiation Damage in Metals, in: M. T. Robinson and F. W. Young, Jr., (eds), Gatlinburg, Tenn., USA, October 6–10, 1975, CONF-751006-P1, p. 470.Search in Google Scholar

60 Seeger, A.: as Ref. [59] p. 493.Search in Google Scholar

61 Roberto, J. B.; Klabunde, C. E.; Williams, J. M.; Coltman, Jr., R. R.; Saltmarsh, M. J.; Fulmer, C. B.: Appl. Phys. Lett. 30 (1977) 509.Search in Google Scholar

62 Roberto, J. B.; Klabunde, C. E.; Williams, J. M.; Coltman, Jr., R. R.: J. Nucl. Mater. 73 (1978) 97.Search in Google Scholar

63 Coltman, Jr., R. R.; Klabunde, C. E.; Redman, J. K.: J. Nucl. Mater. 69 & 70 (1978) 720.Search in Google Scholar

64 Balluffi, R. W.: J. Nucl. Mater. 69 & 70 (1978) 240.Search in Google Scholar

65 Rein, G.; Mehrer, H.; Maier, K.: phys. stat. sol. (a) 45 (1978) 253.Search in Google Scholar

66 Frank, W.; Seeger, A.: J. Nucl. Mater. 69 & 70 (1978) 708.Search in Google Scholar

67 Rein, G.; Saile, B.; Maier, K.; Ziegler, R.; Schaefer, H.-E.; Verhandlungen der Deutschen Physikalischen Gesellschaft, Freudenstadt, Germany (1978), 256; Proc. of the 6th Intern. Conf. on Positron Annihilation, in: P. G. Coleman, S. C. Sharma, L. M. Diana (eds), North Holland Publication Company, Amsterdam (1982).Search in Google Scholar

68 Schüle, W.; Scholz, R.; Panzarasa, A.: Report EUR 6246 EN (1979).Search in Google Scholar

69 Mísek, K.: Czech. J. Phys. B 29 (1979) 1243.Search in Google Scholar

70 Nakagawa, M.: Proc. of the Intern. Yamada Conference Von Point Defects and Defect Interactions in Metals, in: J.-I. Takamura, M. Doyama, and M. Kiritani (eds), University of Tokyo Press, Tokyo (1982) 821.Search in Google Scholar

71 Jung, P.: J. Nucl. Mater. 117 (1983) 70.Search in Google Scholar

72 Guinan, M. W.; Kinney, J. H.; Van Konynenburg, R. A.: J. Nucl. Mater. 133 & 134 (1985) 357.Search in Google Scholar

73 Schüle, W.: Rad. Effects and Defects in Solids 114 (1990) 309.Search in Google Scholar

74 Ehrhart, P.: Atomic Defects in Metals, in: H. Ullmaier, O. Madelung (eds.), Landolt-Börnstein, Group III, Vol. 25, Springer Verlag Berlin (1991) 88.Search in Google Scholar

75 Schüle, W.: 16th Intern. Symp. on Effects of Radiation on Materials, Aurora, Colorado, USA, June 23–25, 1992, in: A. S. Kumar, D. S. Gelles, R. K. Nanstad, E. A. Little (eds), ASTM, STP 1175 (1994) 113.Search in Google Scholar

76 Schüle, W.: Z. Metallkd. 89 (1998) 672–677.Search in Google Scholar

Received: 1998-02-19
Published Online: 2021-12-29

© 1998 Carl Hanser Verlag, München