Abstract
A systematic search for metal – tin systems which show a potentially high remelting temperature in diffusion-soldered bonds was done by investigation of phase formation and reaction kinetics in M–Sn systems (M = Zr, Hf, Nb, Ta, Mo). Phase equilibration experiments were done with powder samples prepared from pure elements, heated in evacuated silica capsules between 300 and 1000 °C for 1 h to 200 days, and studied by X-ray diffraction analysis. Diffusion couples M/Sn (M = Zr, Nb, Ta, Mo) were prepared from the foils of pure elements and heated in a bonding furnace or in evacuated silica tubes at 300 – 700 °C for 6 – 95 h. The couples were cross-sectioned and studied by scanning electron microscopy with energy-dispersive X-ray analysis. The rates of M–Sn reactions can be semiquantitatively ordered in the sequence Zr > Nb > Hf > Ta≫Mo (– Sn). The activation energy of the better defined reactions Zr – Sn, Nb–Sn, Hf–Sn are in the range of 67 – 93 (± 15) kJ/mol. A Ta–Sn phase diagram was constructed with similarities to the V–Sn system. Only Zr –Sn is a potential candidate for diffusion soldering of high-temperature stable bonds, Mo is suggested as an effective diffusion barrier against the attack of liquid tin.
This study was supported by the German Research Council (DFG) under grant No. Schm 588/20.
References
54Mat Matthias, B.T.; Geballe, T.H.; Geller, S.; Corenzwit, E.: Phys. Rev. 95 (1954) 1435.10.1103/PhysRev.95.1435Search in Google Scholar
60Bol Boller, H.; Nowotny, H.; Wittman, A.: Monatsh. Chemie 91 (1960) 1174.10.1007/BF00899845Search in Google Scholar
64Sch Schob, O.; Parthé, E.: Acta Cryst. 17 (1964) 452.10.1107/S0365110X64001025Search in Google Scholar
64Kil Killpatrick, D.H.: J. Phys. Chem. Solids 25 (1964) 1499.10.1016/0022-3697(64)90070-8Search in Google Scholar
67Bro Brown, A.; Westbrook, J.H.: Intermet. Comp. 17 (1967) 303.Search in Google Scholar
67Jou Jouault, F.; Lecocq, P.: Éd du centre national de la recherche sci. 157 (1967) 229.Search in Google Scholar
71Bas Basile, F.: Ann. Chim. 6 (1971) 241.Search in Google Scholar
81Car Carpenter, G.J.C.; Ibrahim, E.F.; Watters, J.F.: J. Nucl. Mat. 102 (1981) 280.10.1016/0022-3115(81)90495-5Search in Google Scholar
86Pet Pettifor, G.D.: J. Phys. Chem. 19 (1986) 285.Search in Google Scholar
89Hie Hieber, H.: German Patent Application DE 37 40 773 A1/Erledigt 1991 (1989).Search in Google Scholar
90Mas Massalski, T.B. et al. (eds.): Binary Alloy Phase Diagrams, ASM, Materials Park, OH (1990).Search in Google Scholar
91Hum Humpston, G.; Jacobson, D.M.; Crees, D.E.; New-combe, D.R.; Zambelli, M.: GEC Rev. 7(2) (1991) 67.Search in Google Scholar
91Vil Villars, P.; Calvert, L.D.: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM, Materials Park, OH (1991).Search in Google Scholar
92Bar Bartels, F.; Muschik, T.; Gust, W.: Verbindungstechnik in der Elektronik, DVS-Berichte, Düsseldorf 129 (1992) 22.Search in Google Scholar
92Mac MacDonald, D.W.; Eagar, T.W.: Ann. Rev. Mat. Sci. 22 (1992) 23.10.1146/annurev.ms.22.080192.000323Search in Google Scholar
93Hum Humpston, G.; Jacobsen, D.M.: ASM, Materials Park, OH (1993) 128.Search in Google Scholar
93Lee Lee, C.C.; Wang, C.Y.; Matijasevic, G.: Trans. Comp., Hyb., Manufact. Techn. 16 (1993) 311.10.1109/33.232058Search in Google Scholar
93Sha Shalz, M.L.; Dalgleish, B.J.; Tomsia, A.P.; Glaeser, A.M.: Cer. trans. Am. Cer. Soc. 35 (1993) 301.Search in Google Scholar
95Sch Schmid-Fetzer, R., in: R.Y. Lin, Y.A. Chang, R.G. Reddy, C.T. Liu (eds.): Design fundamentals of high-temperature composites, intermetallics and metal-ceramic systems, TMS, Warrendale, PA (1995) 75.Search in Google Scholar
95Wer Werder, D.J.; Chen, C.H.; Chen, C.S.; Bacon, D.D.: J. Mat. Res. 10 (1995) 2988.10.1557/JMR.1995.2988Search in Google Scholar
96Kra Kraus, W.; Nolze, G.: J. Appl. Cryst. 29 (1996) 301.10.1107/S0021889895014920Search in Google Scholar
97Boc Bocking, C.; Jacobson, D.M.; Sangha, P.S.; Dickens, P.M.; Soar, R.: GEC J. Technol. 14 (1997) 110.Search in Google Scholar
97Pet Peteves, S.D; Paulasto, M.; Ceccone, G.; Stamos, V.: Acta mater. 46 (1998) 2407.10.1016/S1359-6454(98)80023-2Search in Google Scholar
98Gal Gale, W.F.; Guan, Y.; Orel, S.V.: Int. J. Materials & Product Technology: The J. of Mat. Prod. Tech. 13 (1998) 1.Search in Google Scholar
98Kup Kuper, Ch.; Peng, W.; Pisch, A.; Goesmann, F.; Schmid-Fetzer, R.: Z. Metallkd. 89 (1998) 855.Search in Google Scholar
98Tof Toffolon, C.; Servant, C.; Sundman, B.: J. Phase Equil. 19 (1998) 479.10.1361/105497198770341978Search in Google Scholar
99Kha Khanna, P.K.; Dalke, G.; Gust,W.: Z. Metallkd. 90 (1999) 722.Search in Google Scholar
99Kra Kraus, W.; Nolze, G.: PowderCell for Windows Version 2.3, Federal Institute for Materials Research and Testing, Berlin (1999).Search in Google Scholar
00Bou Bouhajib, A.; Nadiri, A.; Yacoubi, A.; Castanet, R.: Phys. Chem. Liq. 38 (2000) 261.10.1080/00319100008030276Search in Google Scholar
01Xia Xiaowei W.: J. Mat. Sci. 36 (2001) 1539.10.1023/A:1017513200502Search in Google Scholar
02Stu1 Studnitzky, T.; Onderka, B.; Schmid-Fetzer, R.: Z. Metallkd. 93 (2002) 48.10.3139/146.020048Search in Google Scholar
02Stu2 Studnitzky, T.; Schmid-Fetzer, R.: 93 (2002) 885 to Z. Metallkd.10.3139/146.020885Search in Google Scholar
ICDD ICDD Powder Diffraction File, International Center for Diffraction Data, Newtown Square, PA, 19073 –3273 (1998).Search in Google Scholar
© 2002 Carl Hanser Verlag, München