Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 8, 2022

Phase formation and reaction kinetics in M–Sn systems (M = Zr, Hf, Nb, Ta, Mo)

  • Thomas Studnitzky and Rainer Schmid-Fetzer EMAIL logo

Abstract

A systematic search for metal – tin systems which show a potentially high remelting temperature in diffusion-soldered bonds was done by investigation of phase formation and reaction kinetics in M–Sn systems (M = Zr, Hf, Nb, Ta, Mo). Phase equilibration experiments were done with powder samples prepared from pure elements, heated in evacuated silica capsules between 300 and 1000 °C for 1 h to 200 days, and studied by X-ray diffraction analysis. Diffusion couples M/Sn (M = Zr, Nb, Ta, Mo) were prepared from the foils of pure elements and heated in a bonding furnace or in evacuated silica tubes at 300 – 700 °C for 6 – 95 h. The couples were cross-sectioned and studied by scanning electron microscopy with energy-dispersive X-ray analysis. The rates of M–Sn reactions can be semiquantitatively ordered in the sequence Zr > Nb > Hf > Ta≫Mo (– Sn). The activation energy of the better defined reactions Zr – Sn, Nb–Sn, Hf–Sn are in the range of 67 – 93 (± 15) kJ/mol. A Ta–Sn phase diagram was constructed with similarities to the V–Sn system. Only Zr –Sn is a potential candidate for diffusion soldering of high-temperature stable bonds, Mo is suggested as an effective diffusion barrier against the attack of liquid tin.


Prof. Dr. R. Schmid-Fetzer Institute of Metallurgy Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld, Germany Tel.: +49 5323 722 150 Fax: +49 5323 723 120

  1. This study was supported by the German Research Council (DFG) under grant No. Schm 588/20.

References

54Mat Matthias, B.T.; Geballe, T.H.; Geller, S.; Corenzwit, E.: Phys. Rev. 95 (1954) 1435.10.1103/PhysRev.95.1435Search in Google Scholar

60Bol Boller, H.; Nowotny, H.; Wittman, A.: Monatsh. Chemie 91 (1960) 1174.10.1007/BF00899845Search in Google Scholar

64Sch Schob, O.; Parthé, E.: Acta Cryst. 17 (1964) 452.10.1107/S0365110X64001025Search in Google Scholar

64Kil Killpatrick, D.H.: J. Phys. Chem. Solids 25 (1964) 1499.10.1016/0022-3697(64)90070-8Search in Google Scholar

67Bro Brown, A.; Westbrook, J.H.: Intermet. Comp. 17 (1967) 303.Search in Google Scholar

67Jou Jouault, F.; Lecocq, P.: Éd du centre national de la recherche sci. 157 (1967) 229.Search in Google Scholar

71Bas Basile, F.: Ann. Chim. 6 (1971) 241.Search in Google Scholar

81Car Carpenter, G.J.C.; Ibrahim, E.F.; Watters, J.F.: J. Nucl. Mat. 102 (1981) 280.10.1016/0022-3115(81)90495-5Search in Google Scholar

86Pet Pettifor, G.D.: J. Phys. Chem. 19 (1986) 285.Search in Google Scholar

89Hie Hieber, H.: German Patent Application DE 37 40 773 A1/Erledigt 1991 (1989).Search in Google Scholar

90Mas Massalski, T.B. et al. (eds.): Binary Alloy Phase Diagrams, ASM, Materials Park, OH (1990).Search in Google Scholar

91Hum Humpston, G.; Jacobson, D.M.; Crees, D.E.; New-combe, D.R.; Zambelli, M.: GEC Rev. 7(2) (1991) 67.Search in Google Scholar

91Vil Villars, P.; Calvert, L.D.: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM, Materials Park, OH (1991).Search in Google Scholar

92Bar Bartels, F.; Muschik, T.; Gust, W.: Verbindungstechnik in der Elektronik, DVS-Berichte, Düsseldorf 129 (1992) 22.Search in Google Scholar

92Mac MacDonald, D.W.; Eagar, T.W.: Ann. Rev. Mat. Sci. 22 (1992) 23.10.1146/annurev.ms.22.080192.000323Search in Google Scholar

93Hum Humpston, G.; Jacobsen, D.M.: ASM, Materials Park, OH (1993) 128.Search in Google Scholar

93Lee Lee, C.C.; Wang, C.Y.; Matijasevic, G.: Trans. Comp., Hyb., Manufact. Techn. 16 (1993) 311.10.1109/33.232058Search in Google Scholar

93Sha Shalz, M.L.; Dalgleish, B.J.; Tomsia, A.P.; Glaeser, A.M.: Cer. trans. Am. Cer. Soc. 35 (1993) 301.Search in Google Scholar

95Sch Schmid-Fetzer, R., in: R.Y. Lin, Y.A. Chang, R.G. Reddy, C.T. Liu (eds.): Design fundamentals of high-temperature composites, intermetallics and metal-ceramic systems, TMS, Warrendale, PA (1995) 75.Search in Google Scholar

95Wer Werder, D.J.; Chen, C.H.; Chen, C.S.; Bacon, D.D.: J. Mat. Res. 10 (1995) 2988.10.1557/JMR.1995.2988Search in Google Scholar

96Kra Kraus, W.; Nolze, G.: J. Appl. Cryst. 29 (1996) 301.10.1107/S0021889895014920Search in Google Scholar

97Boc Bocking, C.; Jacobson, D.M.; Sangha, P.S.; Dickens, P.M.; Soar, R.: GEC J. Technol. 14 (1997) 110.Search in Google Scholar

97Pet Peteves, S.D; Paulasto, M.; Ceccone, G.; Stamos, V.: Acta mater. 46 (1998) 2407.10.1016/S1359-6454(98)80023-2Search in Google Scholar

98Gal Gale, W.F.; Guan, Y.; Orel, S.V.: Int. J. Materials & Product Technology: The J. of Mat. Prod. Tech. 13 (1998) 1.Search in Google Scholar

98Kup Kuper, Ch.; Peng, W.; Pisch, A.; Goesmann, F.; Schmid-Fetzer, R.: Z. Metallkd. 89 (1998) 855.Search in Google Scholar

98Tof Toffolon, C.; Servant, C.; Sundman, B.: J. Phase Equil. 19 (1998) 479.10.1361/105497198770341978Search in Google Scholar

99Kha Khanna, P.K.; Dalke, G.; Gust,W.: Z. Metallkd. 90 (1999) 722.Search in Google Scholar

99Kra Kraus, W.; Nolze, G.: PowderCell for Windows Version 2.3, Federal Institute for Materials Research and Testing, Berlin (1999).Search in Google Scholar

00Bou Bouhajib, A.; Nadiri, A.; Yacoubi, A.; Castanet, R.: Phys. Chem. Liq. 38 (2000) 261.10.1080/00319100008030276Search in Google Scholar

01Xia Xiaowei W.: J. Mat. Sci. 36 (2001) 1539.10.1023/A:1017513200502Search in Google Scholar

02Stu1 Studnitzky, T.; Onderka, B.; Schmid-Fetzer, R.: Z. Metallkd. 93 (2002) 48.10.3139/146.020048Search in Google Scholar

02Stu2 Studnitzky, T.; Schmid-Fetzer, R.: 93 (2002) 885 to Z. Metallkd.10.3139/146.020885Search in Google Scholar

ICDD ICDD Powder Diffraction File, International Center for Diffraction Data, Newtown Square, PA, 19073 –3273 (1998).Search in Google Scholar

Received: 2002-04-08
Published Online: 2022-01-08

© 2002 Carl Hanser Verlag, München

Downloaded on 29.11.2023 from https://www.degruyter.com/document/doi/10.3139/ijmr-2002-0153/html
Scroll to top button