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This study analyzes the steady laminar two-dimensional stagnation point flow and heat transfer of
an incompressible viscous fluid impinging normal to a horizontal plate, with the bottom surface of
the plate heated by convection from a hot fluid. A uniform magnetic field is applied in a direction
normal to the flat plate, with a free stream velocity varying linearly with the distance from the stagna-
tion point. The governing partial differential equations are first transformed into ordinary differential
equations, before being solved numerically. The analysis includes the effects of the magnetic param-
eter, the Prandtl number, and the convective parameter on the heat transfer rate at the surface. Results
showed that the heat transfer rate at the surface increases with increasing values of these quantities.
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1. Introduction

The study of flow and heat transfer near a stagna-
tion point has generated a lot of interests amongst re-
searchers because there are many practical situations
where fluids flowing impinging normally or obliquely
to plane surfaces are encounted. Theories on the stag-
nation flow and associated heat transfer characteristics
would be useful to enhance the technological devel-
opments involving related fields of study. Since the
development of an exact solution for the two dimen-
sional stagnation flow by Hiemenz [1] and an exact
similar solution for the corresponding thermal field by
Eckert [2], studies on the flow and heat transfer near
a stagnation point has diversified to produce numer-
ous results for stagnation-point flow and heat transfer,
with different geometrical configurations, types of flu-
ids, and boundary conditions. Stagnation point flows
and related heat transfer problems are also encoun-
tered in problems involving stretching or shrinking
sheets. Some examples of these studies can be found
in [3 – 17]. More recently, Aziz [18], Magyari [19],
Ishak [20], Ishak et al. [21], and Yao et al. [22] con-
sidered the similar problem for the case of convective
boundary conditions. Aziz [18] considered the classi-
cal hydrodynamic and thermal boundary layers over

a flat plate in a uniform stream of fluid and demon-
strated that a similarity solution is possible if the con-
vective heat transfer associated with the hot fluid on
the lower surface of the plate is proportional to x−1/2.
Ishak [20] extended this study by introducing the ef-
fects of suction and injection on the flat surface, using
the same assumption on the convective heat transfer
coefficient at the plate’s lower surface. Both Aziz [18]
and Ishak [20] assumed a uniform free stream velocity.

The objective of the present study is to extend the
work of Aziz [18] to include the effect of a uniform
magnetic field applied in a direction normal to the flat
plate, with a free stream velocity varying linearly with
the distance x from the stagnation-point, i.e. ue(x) =
ax. The numerical analysis includes the effects of the
magnetic parameter, the Prandtl number, and the con-
vective parameter on the heat transfer rate at the sur-
face.

2. Problem Formulation

Consider a steady laminar two-dimensional stagna-
tion point flow of an incompressible viscous fluid im-
pinging normal to a horizontal plate as shown in Fig-
ure 1. It is assumed that the free stream velocity is of
the form ue(x) = ax, where a is a constant. Further,
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Fig. 1 (colour online). Physical model and coordinate system.

a uniform magnetic field of strength B0 is assumed to
be applied in the positive y-direction normal to the flat
plate. The magnetic Reynolds number is assumed to
be small, and thus the induced magnetic field is negli-
gible. The boundary layer equations are [23 – 25]

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

= ue
due

dx
+ν

∂ 2u
∂y2 +

σB0

ρ
(ue−u),

(2)

u
∂T
∂x

+ v
∂T
∂y

= α
∂ 2T
∂y2 , (3)

where u and v are the velocity components in the x and
y-directions, respectively, T is the fluid temperature in
the boundary layer, ν is the kinematic viscosity, and α

is the thermal diffusivity. The boundary conditions for
the flow field are

u = 0, v = 0 at y = 0,

u→ ue as y→ ∞.
(4)

It is assumed that the bottom surface of the plate is
heated by convection from a hot fluid of temperature
Tf which provides a heat transfer coefficient hf.

Under this assumption, the boundary conditions for
the thermal field may be written as [18]

− k
∂T
∂y

= hf(Tf−Tw) at y = 0,

T → T∞ as y→ ∞,

(5)

with k and Tw being the thermal conductivity and the
uniform temperature over the top surface of the plate,
respectively. Here we have Tf > Tw > T∞.

In order to solve (1) – (5), we introduce the follow-
ing similarity transformation (see Aziz [18]):

η = (ue/νx)1/2y, ψ = (νxue)1/2 f (η),

θ(η) =
T −T∞

Tf−T∞
.

(6)

In the above equations, η is the similarity variable, f is
the dimensionless stream function, θ is the dimension-
less temperature, and ψ is the stream function defined
as u = ∂ψ/∂y and v =−∂ψ/∂x which identically sat-
isfies (1). Using (6) we obtain

u = ax f ′(η), v =−(νa)1/2 f (η), (7)

where primes denote differentiation with respect to η .
Substituting (6) and (7) into (2) and (3), we obtain

f ′′′+ f f ′′+1− f ′2 +M(1− f ′) = 0, (8)
1
Pr

θ
′′+ f θ

′ = 0, (9)

where Pr = ν/α is the Prandtl number and M is the
magnetic parameter defined as M = σB2

0/(ρa). The
transformed boundary conditions are

f (0) = 0, f ′(0) = 0, −θ
′(0) = c[1−θ(0)],

f ′(η)→ 1, θ(η)→ 0 as η → ∞, (10)

where c = (ν/a)1/2hf/k is the convective parameter.
It should be mentioned that the free stream velocity
ue(x) is a function of x, hence it is different from the
work of Aziz [18] and Ishak [20], in which a uniform
free stream velocity was assumed. Due to this, in both
their studies, it is required to assume that the heat trans-
fer coefficient hf is proportional to x−1/2, in order for
the similarity solution of the energy equation to ex-
ist. In the present study, due to the form of the free
stream velocity, ue(x) = ax, this restriction is no longer
necessary.

The quantities of physical interest are the values of
f ′′(0), being a measure of the skin friction, and the heat
transfer rate at the surface −θ ′(0). Our main aim is to
investigate how the values of f ′′(0) and−θ ′(0) vary in
terms of the parameters c, M, and Pr.

3. Results and Discussion

The ordinary differential equations (8) and (9) sub-
ject to the boundary conditions (10) were solved
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Fig. 2. Velocity profiles f ′(η) for various values of M when
Pr = 10 and c = 5.

numerically using a shooting method described
in [15, 16]. Numerical solutions for the momentum
equation (8) showed that the skin friction coefficient
f ′′(0) increases with the value of the magnetic param-
eter M, but is not affected by the values of either the
convective parameter c or the Prandtl number Pr. This
is expected since the momentum equation is indepen-
dent of the parameters c and Pr. The velocity profiles
presented in Figure 2 show that both the fluid velocity
and the velocity gradient at the surface increase with
the magnetic parameter M. This trend agrees with most
earlier studies on the effect of magnetic field on the
momentum transfer over a flat plate. Thus, the focus
of the present study will be on the heat transfer prob-
lem. Table 1 presents the values of −θ ′(0), which rep-
resents the heat transfer rate at the surface, for various
values of the magnetic parameter M, the Prandtl num-

Table 1. Values of −θ ′(0) for various values of c, M, and Pr.

c −θ ′(0)
M = 0 M = 0.5 M = 1

Pr = 0.72 Pr = 1 Pr = 7 Pr = 0.72 Pr = 1 Pr = 7 Pr = 0.72 Pr = 1 Pr = 7
0.05 0.045466 0.045971 0.047965 0.045557 0.046059 0.048030 0.045626 0.046126 0.048078
0.1 0.083373 0.085085 0.092178 0.083679 0.085388 0.092417 0.083912 0.085619 0.092598
0.2 0.142974 0.148083 0.170980 0.143876 0.149004 0.171805 0.144565 0.149707 0.172433
0.6 0.222505 0.292430 0.397568 0.276466 0.296043 0.402058 0.279022 0.298832 0.405514
0.8 0.273153 0.333005 0.476502 0.312459 0.337698 0.482966 0.315728 0.341333 0.487962
1 0.308235 0.363246 0.540942 0.338935 0.368837 0.549288 0.342785 0.373177 0.555760
5 0.33397 0.512045 0.953629 0.465026 0.523225 0.979874 0.472304 0.532001 1.000661

10 0.45573 0.539678 1.054156 0.487705 0.552113 1.086320 0.495716 0.561894 1.111927
20 0.477491 0.554645 1.112810 0.499895 0.567787 1.148713 0.508315 0.578137 1.177386

Fig. 3. Temperature profiles θ(η) for various values of Pr
when c = 10 and M = 0.5.

ber Pr, and the convective parameter c. As evident from
Table 1, the values of −θ ′(0) increase with the values
of the convective parameter c, the magnetic parame-
ter M, and the Prandtl number Pr. We notice that the
values of −θ ′(0) for the non-magnetic case (M = 0)
when Pr = 0.72 are slightly higher than those given
by Aziz [18] and Ishak [20] for the case of a uniform
free stream. This is due to the fact that the present
study assumes the free stream velocity to be a linear
function of x, which accelerates the fluid motion in the
boundary layer, and in consequence increases the sur-
face shear stress and the heat transfer rate at the sur-
face. Figure 3 shows the temperature profiles for vari-
ous values of the Prandtl number Pr when the convec-
tive parameter and the magnetic parameter are fixed
at c = 10 and M = 0.5, respectively. As evident from
this figure, the surface temperature θ(0) decreases as
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Fig. 4. The heat transfer rate at the surface −θ ′(0) as a func-
tion of c(> 0) for various values of Pr when M = 0.5.

Fig. 5. Temperature profiles θ(η) for various values of
c(> 0) when Pr = 7 and M = 0.5.

the Prandtl number Pr increases. Furthermore, as the
value of Pr increases, the thermal boundary layer thick-
ness decreases, resulting in an increase in the temper-
ature gradient at the surface (in absolute sense). This
trend can also be observed from Figure 4, which shows
the variation of the heat transfer rate at the surface
−θ ′(0) with the convective parameter c for various val-
ues of Pr.

Figure 5 shows the variation of the temperature pro-
files with the convective parameter c when the mag-
netic parameter and the Prandtl number are fixed at
M = 0.5 and Pr = 7. The figure shows that the bound-
ary layer thickens as c increases, and both the fluid

Fig. 6. The heat transfer rate at the surface −θ ′(0) as a func-
tion of M for various values of c and Pr.

Fig. 7. Temperature profiles θ(η) for various values of M
when Pr = 10 and c = 5.

temperature θ(η) and the heat transfer rate at the sur-
face −θ ′(0) increase with the convective parameter c.

Figure 6 presents the variation of −θ ′(0) with the
magnetic parameter M for various values of the Prandtl
number Pr and the convective parameter c. The figure
shows a slight increase in the heat transfer rate at the
surface, (represented by the value of −θ ′(0)) as the
magnetic parameter M increases. Figure 7 presents ve-
locity profiles for various values of the magnetic pa-
rameter M for the case when Pr = 10 and c = 5, indi-
cating a slight decrease in the thermal boundary layer
thickness and the fluid temperature as the value of the
magnetic parameter increases.
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4. Conclusions

We have investigated the fluid flow and heat trans-
fer characteristics of a steady laminar two-dimensional
stagnation point flow of an incompressible viscous
fluid impinging normal to a horizontal plate, with the
free stream velocity of the form ue(x) = ax, and a uni-
form magnetic field of strength B0 applied normal to
the flat plate, with a convective boundary condition at
the surface of the plate. It is found that the applied
magnetic field increases the skin friction coefficient
f ′′(0), and consequently the surface shear stress. How-
ever, the Prandtl number Pr and the convective param-

eter c have no effect on the skin friction coefficient.
Further, the heat transfer rate at the surface, −θ ′(0),
increases with the Prandtl number Pr, the convective
parameter c, and the magnetic parameter M.
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