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This article reports the flow of a Casson fluid in the region of stagnation-point towards a stretching
sheet. The characteristics of heat transfer with viscous dissipation are also analyzed. The partial dif-
ferential equations representing the flow and heat transfer of the Casson fluid are reduced to ordinary
differential equations through suitable transformations. The flow is therefore governed by the Casson
fluid parameter β , the ratio of the free stream velocity to the velocity of the stretching sheet a/c, the
Prandtl number Pr, and the Eckert number Ec. The analytic solutions in the whole spatial domain
have been computed by the homotopy analysis method (HAM). The dimensionless expressions for
the skin friction coefficient and the local Nusselt number have been calculated and discussed.
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1. Introduction

The boundary-layer theory is among the most suc-
cessful idealization in the history of Newtonian fluid
mechanics [1]. With the help of this theory, many fluid
flows and heat transfer problems have been very suc-
cessfully mathematically modelled, with results that
agree very well with experimental observations. How-
ever, many fluids of industrial importance are non-
Newtonian and an extension of the theory of Newto-
nian fluids to the theory of such fluids has proved to
be not so straightforward (see, for example, [2 – 6]).
It is now generally recognized that, in real industrial
applications, non-Newtonian fluids are more appropri-
ate than Newtonian fluids. These fluids have wide-
ranging industrial applications, for example, in the de-
sign of thrust bearings and radial diffusers, drag reduc-
tion, transpiration cooling, thermal oil recovery, etc.
In certain polymer processing applications, one deals
with the flow of a second-order (viscoelastic) fluid over
a stretching surface. Such fluids are referred to as fluids
of the differential type, that is, fluids whose stress is de-
termined by the Rivlin–Ericksen tensors [7], or fluids

of the rate type, such as the Oldroyd-B fluid [8]. Poly-
mers mixed in Newtonian solvents and polymer melts,
such as high-viscosity silicone oils or molten plastics,
are examples of such fluids. Numerous models have
been suggested for non-Newtonian fluids, with their
constitutive equations varying greatly in complexity.
Some authors have studied the Casson fluid for the flow
between two rotating cylinders [9] and for the steady
and oscillatory blood flow [10].

The problem of the boundary-layer flow of an in-
compressible viscous fluid (Newtonian fluids) near the
stagnation point on a stretching sheet has an impor-
tant bearing on several technological processes. In fact,
this problem belongs to a very large class of stretch-
ing problems, which are very well described physi-
cally and very well documented in the literature (see,
for example, [11 – 19], etc.). An example of a stretch-
ing surface is a polymer sheet of filament extruding
continuously from a die or a long thread travelling be-
tween a feed roll and a wind-up roll. Another exam-
ple that belongs to this class of problems is the cool-
ing of a large metallic plate in a bath, which may be
an electrolyte. In all of these cases, a study of the
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flow field and heat transfer can be of significant im-
portance since the quality of the final product depends
to a large extent on the skin friction coefficient and the
surface heat transfer rate. The present paper aims to
study the steady boundary-layer flow of a Casson fluid
near the stagnation-point on a stretching surface us-
ing the homotopy analysis method (HAM) which has
been successfully applied to various interesting prob-
lems [20 – 29]. The novel results presented in this study
demonstrate the existence of similar solutions of the
boundary-layer equations for a class of general non-
Newtonian fluids for a stretching surface. For solutions
being similar, the problem is reduced to the solution of
a set of two nonlinear ordinary differential equations
that are solved analytically using HAM for a range of
values of the governing parameters. Results are com-
pared with those from the open literature for some par-
ticular values of the governing parameters and it is
found that they are in a very good agreement.

2. Basic Equations

Consider the steady two-dimensional flow of a Cas-
son fluid near the stagnation-point on a heated stretch-
ing surface coinciding with the plane y = 0, the flow
being confined to y > 0, where y is the coordinate nor-
mal to the surface. Two equal and opposite forces are
applied along the x-axis (measured along the surface)
so that the surface is stretched keeping the origin fixed.
It is assumed that the velocity distribution far from
the surface (potential flow) is given by ue(x) = ax and
ve(y) = −ay, while the velocity of the stretching sur-
face is uw(x) = cx where a and c are positive constants.
It is also assumed that the temperature of the plate is
Tw(x), while the uniform temperature of the ambient
fluid is T∞. We assume that the rheological equation of
state for an isotropic and incompressible flow of a Cas-
son fluid can be written as [30]

τi j =

{
2
(
µB + py/

√
2π
)

ei j, π > πc,

2
(
µB + py/

√
2πc
)

ei j, π < πc,
(1)

where π = ei jei j and ei j is the (i, j)th component of the
deformation rate, π is the product of the component of
deformation rate with itself, πc is a critical value of this
product based on the non-Newtonian model, µB is the
plastic dynamic viscosity of the non-Newtonian fluid,
and py is the yield stress of the fluid. Under these con-
ditions along with the assumption that the viscous dis-

sipation term in the energy equation is taken into con-
sideration, the boundary layer equations which govern
this problem are

∂u
∂x

+
∂v
∂y

= 0, (2)

u
∂u
∂x

+ v
∂u
∂y

= ue
due

dx
+ν (1+1/β )

∂ 2u
∂y2 , (3)

u
∂T
∂x

+ v
∂T
∂y

= α
∂ 2T
∂y2 +

ν

Cp
(1+1/β )

(
∂u
∂y

)2

, (4)

subject to the boundary conditions

u = uw(x) = cx, v = 0, T = Tw(x) = T∞ +bx2

at y = 0,

u→ ue(x) = ax, T → T∞ as y→ ∞,

(5)

where b is a positive constant, β = µB
√

2πc/py is the
non-Newtonian (Casson) parameter, α is the thermal
diffusivity, ν is the kinematic viscosity, and Cp is the
specific heat.

We introduce the following similarity variables:

ψ = x
√

cν f (η), θ(η) =
T −T∞

Tw−T∞

, η =
√

c
ν

y, (6)

where ψ is the stream function which is defined in the
usual way as u = ∂ψ/∂y and v =−∂ψ/∂x. Substitut-
ing (6) into (3) and (4), the set of ordinary differential
equations results in

(1+1/β ) f ′′′+ f f ′′− f ′2 +
a2

c2 = 0, (7)

1
Pr

θ
′′+ f θ

′−2 f ′θ +(1+1/β )Ec f ′′2 = 0, (8)

and the boundary conditions in (5) become

f (0) = 0, f ′(0) = 1, θ(0) = 1,

f ′(∞)→ a
c
, θ(∞)→ 0.

(9)

Here Pr = ν/α is the Prandtl number, Ec =
u2

w/ [Cp (Tw−T∞)] is the constant Eckert number, and
the prime denotes differentiation with respect to η . It
is worth mentioning that for a regular viscous fluid
(β → ∞), (7) and (8) reduce to (12) and (20) from the
paper by Mahapatra and Gupta [14].

The physical quantities of interest are the skin fric-
tion coefficient Cf and the local Nusselt number Nux,
which are defined as

Cf =
τw

ρu2
w(x)

, Nux =
xqw

k(Tw−T∞)
, (10)
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where τw is the skin friction or shear stress along the
stretching surface and qw is the heat flux from the sur-
face, which are given by

τw =
(

µβ +
py√
2πc

)(
∂u
∂y

)
y=0

,

qw =−k

(
∂T
∂y

)
y=0

.

(11)

Using (6), we get

Re1/2
x Cf = (1+1/β ) f ′′(0),

Nux/Re1/2
x =−θ

′(0),
(12)

where Rex = uw(x)x/ν is the local Reynolds number.

3. Homotopy Analysis Solutions

Following the rule of solution expressions for f and
θ and the boundary conditions (9) we select the initial
guesses for f and θ in the forms

f0(η) =
a
c

η +(1−A)(1− exp(−η)),

θ0(η) = exp(−η),
(13)

and the auxiliary linear operators are expressed as

L f =
d3 f
dη3 −

d f
dη

, Lθ =
d2θ

dη2 −θ , (14)

with

L f [C1 +C2 exp(η)+C3 exp(−η)] = 0,

Lθ [C4 exp(η)+C5 exp(−η)] = 0,
(15)

and Ci (i = 1 – 5) are the arbitrary constants. Let p ∈
[0,1] indicate the embedding parameter and } f and }θ

the nonzero auxiliary parameters. The relevant prob-
lems at the zeroth and mth-order problems are con-
structed as

(1− p)L f [ f̂ (η , p)− f0(η)]

= ph̄ fN f
[

f̂ (η , p), θ̂(η , p)
]
,

(16)

(1− p)Lθ [θ̂(η , p)−θ0(η)]

= ph̄θNθ

[
f̂ (η , p), θ̂(η , p)

]
,

(17)

f̂ (η ; p)
∣∣
η=0 = 0,

∂ f̂ (η ; p)
∂η

∣∣∣∣
η=0

= 1,

∂ f̂ (η ; p)
∂η

∣∣∣∣
η=∞

=
a
c
,

(18)

θ̂(η ; p)
∣∣
η=0 = 1, θ̂(η ; p)

∣∣
η=∞

= 0, (19)

L f [ fm (η)−χm fm−1 (η)] = h̄ fR f
m (η) , (20)

Lθ [θm (η)−χmθm−1 (η)] = h̄θRθ
m (η) , (21)

fm(0) = 0, f ′m(0) = 0, f ′m(∞) = 0,

θm(0) = 0, θm(∞) = 0,
(22)

N f
[

f̂ (η ; p), θ̂(η ; p)
]
= (1+1/β )

∂ 3 f̂ (η , p)
∂η3

+ f̂ (η , p)
∂ 2 f̂ (η , p)

∂η2 −
(

∂ f̂ (η , p)
∂η

)2

+
a2

c2 ,

(23)

Nθ

[
f̂ (η ; p), θ̂(η ; p)

]
=

1
Pr

∂ 2θ̂(η , p)
∂η2

+ f̂ (η , p)
∂ θ̂(η , p)

∂η
−2

∂ f̂ (η , p)
∂η

θ̂(η , p)

+Ec(1+1/β )
(

∂ 2 f̂ (η , p)
∂η2

)2

,

(24)

R f
m (η) = (1+1/β ) f ′′′m−1 +

m−1

∑
k=0

[
fm−1−k f ′′k

− f ′m−1−k f ′k
]
+

a2

c2 (1−χm) ,

(25)

Rθ
m (η) =

1
Pr

θ
′′
m−1 +

m−1

∑
k=0

[
fm−1−kθ

′
k−2 f ′m−1−kθk

]
+Ec

m−1

∑
k=0

f ′′m−1−k f ′′k ,

(26)

χm =

{
0, m≤ 1,

1, m > 1,
(27)

where for p = 0 and p = 1, we have

f̂ (η ;0) = f0(η), f̂ (η ;1) = f (η), (28)

θ̂(η ;0) = θ0(η), θ̂(η ;1) = θ(η). (29)

Employing Taylor’s theorem, we can write

f̂ (η ; p) = f0(η)+
∞

∑
m=1

fm(η)pm,

fm(η) =
1

m!
∂ m f (η ; p)

∂ηm

∣∣∣∣
p=0

,

(30)

θ̂(η ; p) = θ0(η)+
∞

∑
m=1

θm(η)pm,

θm(η) =
1

m!
∂ mθ(η ; p)

∂ηm

∣∣∣∣
p=0

,

(31)
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in which the auxiliary parameters are selected in such
a way that the series (31) and (32) converge at p = 1
and hence

f (η) = f0(η)+
∞

∑
m=1

fm(η), (32)

θ(η) = θ0(η)+
∞

∑
m=1

θm(η). (33)

The general solutions of (20) – (22) are

fm(η) = f ∗m(η)+C1 +C2 exp(η)
+C3 exp(−η),

(34)

θm(η) =θ
∗
m(η)+C4 exp(η)

+C5 exp(−η),
(35)

where f ∗m(η) and θ ∗m(η) denote the special solutions
and

C2 = C4 = 0,

C1 =−C3− f ∗m(0), C3 =
∂ f ∗(η)

∂η

∣∣∣∣
η=0

,

C5 =−θ
∗
m(0).

(36)

Equations (20) – (22) have been solved by utilizing
the symbolic software Mathematica for m = 1,2,3. . . .

4. Analysis of the Results

4.1. Convergence of the Homotopy Solutions

The auxiliary parameters appearing in (20) and (21)
can easily adjust and control the convergence of the
derived expressions. To select appropriate values of
these parameters, we display the so-called } f - and }θ -
curves at 15th-order of approximations for various val-
ues of stretching ratio a/c. The admissible range of } f

and }θ can be obtained from the line segment paral-
lel to the } f -, }θ -axis in Figures 1 and 2 [21]. For
a/c = 0.2 and β = 1.0, the ranges for } f and }θ are
−0.8 ≤ } f ≤ −0.3 and −0.8 ≤ }θ ≤ −0.4, respec-
tively. It is observed that the range for } f shifts towards
the right hand side with an increase in a/c (Fig. 1).
From Figure 2 it is seen that the range for }θ slightly
shrinks for large values of a/c. In order to see the
accuracy of the present results, we display the three-
dimensional } f , }θ ∼ η curves for the residual error at
15th-order of approximations. Here we can easily de-
termine the values of } f and }θ which are giving min-
imum error. It is evident from Figures 3 and 4 that the

obtained results are accurate up to six decimal places
for all the values of the similarity variable η when we
select } f = }θ =−0.6.

4.2. Results and Discussion

In order to analyze the behaviours of various pa-
rameters on the velocity and temperature fields, Fig-
ures 5 – 9 are sketched. Since the obtained series solu-
tions converge at 15th-order of approximations, these
figures are plotted for 15th-order HAM solution. The
effect of stretching ratio a/c on the velocity field f ′

is observed in Figure 5. For small values of a/c (0 ≤
a/c < 1) the velocity and boundary layer thickness in-
crease with an increase in a/c. An increase in the ve-
locity follows from the fact that gradual increase in a/c
increases the free stream velocity which results in the

Fig. 1. }-curve for the function f .

Fig. 2. }-curve for the function θ .
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Fig. 3 (colour online). Residual error for the function f .

Fig. 5. Influence of a/c on f ′.

Fig. 7. Influence of a/c on θ .

increase in the velocity. For large values of a/c, the ve-
locity increases and the boundary layer thickness de-
creases with the increasing values of a/c. The influ-

Fig. 4 (colour online). Residual error for the function θ .

Fig. 6. Influence of β on f ′.

Fig. 8. Influence of Pr on θ .

ence of non-Newtonian (Casson) parameter β on the
velocity field is depicted in Figure 6. An increase in
β corresponds to a decrease in the velocity and the
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boundary layer thickness for fixed value of a/c(= 0.2).
Thus it is quite obvious that the magnitude of veloc-
ity is greater in the case of the Casson fluid when
compared with the viscous fluid. To observe the in-
fluences of embedding parameters such as stretching
ratio a/c, Prandtl number Pr, and Eckert number Ec
on the temperature θ , Figures 7 – 9 are displayed. The
consequences of an increase in a/c on the tempera-
ture are seen in Figure 7. An increase in a/c results in
the decrease of temperature and the thermal boundary
layer thickness. Thus the stronger free stream velocity
causes a reduction in the temperature and the thermal
boundary layer thickness. The outcome of an increase
in the Prandtl number Pr is captured in Figure 8. From
the definition of Pr it is obvious that a rapid increase
in Pr decreases the thermal conductivity which tends
to decrease the temperature and the thermal boundary
layer thickness. This observation can be easily visu-
alized in Figure 8. Furthermore, it is noticed that the
temperature profiles show an appreciable increase for
small values of Pr . An enhancement in the Eckert num-
ber Ec results in the increase in the temperature θ . This
change is quite siginificant for large values of Ec (see
Fig. 9).

Table 1 is prepared to visualize the convergence rate
of the obtained series solutions. It is noticed that the
series solutions converge at only 15th-order of approx-
imations. The present results are compared with those
of Mahapatra and Gupta [14] and Ishak et al. [20] for
the case of viscous fluid. The numerical results for the
skin friction coefficient were found to be in excellent
agreement with the current results. In Tables 3 and 4,
the numerical values of skin friction coefficient and lo-
cal Nusselt number are obtained for different values of
parameters. The magnitude of the skin friction coeffi-
cient is a decreasing function of β and a/c. The large
values of Ec decrease the magnitude of local Nusselt

Table 1. Convergence of series solutions for different order
of approximations when a/c = 0.2, β = 1.0, Pr = Ec = 1.0,
and h̄ f = h̄θ =−0.6.

Order of approximations − f ′′(0) −θ ′(0)
1 0.604000 0.993000
5 0.648635 1.122912

10 0.649206 1.123112
15 0.649120 1.123090
20 0.649120 1.123100
25 0.649120 1.123100
35 0.649120 1.123100
40 0.649120 1.123100

Fig. 9. Influence of Ec on θ .

Table 2. Comparison of values of f ′′(0) with those of Maha-
patra and Gupta [14] and Ishak et al. [20] for various values
of a/c when β → ∞, h̄ f = h̄θ =−0.6.

a/c Present Mahapatra and Gupta [14] Ishak et al. [20]
0.01 −0.99802 – −0.9980
0.10 −0.96939 −0.9694 −0.9694
0.20 −0.91807 −0.9181 −0.9181
0.50 −0.66735 −0.6673 −0.6673
2.00 2.01757 2.0175 2.0175
3.00 4.72964 4.7294 4.7294

Table 3. Values of skin friction coefficient and local Nusselt
number for various values of β and a/c when Pr = Ec = 1.0
and h̄ f = h̄θ =−0.6.

β a/c Re1/2
x C f Re−1/2

x Nux

0.7 0.2 −1.430767 −1.120981
1.0 −1.298400 −1.123109
1.5 −1.185271 −1.123877
∞ −0.918107 −1.119034
1.0 0.0 −1.414214 −1.012816

0.1 −1.370919 −1.059920
0.3 −1.201263 −1.194360
0.5 −1.082333 −1.268512

Table 4. Values of local Nusselt number for various values of
Pr and Ec when β = 1.0, a/c = 0.2, and h̄ f = h̄θ =−0.6.

Pr Ec Re−1/2
x Nux

0.8 1.0 −1.005229
1.2 −1.228155
1.5 −1.368437
2.0 −1.570291
1.0 0.5 −1.280454

0.8 −1.186041
1.5 −0.965744
2.0 −0.808389
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number whereas the Nusselt number show an appre-
ciable increase with the increasing values of β , a/c,
and Pr.

5. Conclusions

The flow and heat transfer of a non-Newtonian (Cas-
son) fluid is investigated about a stagnation-point on
a stretching sheet. The resulting problems have been
computed by the homotopy analysis method (HAM).
The main points of this study are:
• It is obvious from Table 1 that the series solutions

converge at only 15th-order of approximations up to
six decimal places.

• The magnitudes of velocity and skin friction coef-
ficient are greater in case of the Casson fluid when
compared with the viscous fluid.

• Temperature and thermal boundary layer thick-
ness are decreasing functions of the non-Newtonian
(Casson) parameter.

• The influence of Prandtl number Pr and Casson fluid
parameter β on the temperature is similar in a qual-
itative sense.

• The effect of Eckert number Ec is to increase the
temperature and the thermal boundary layer thick-
ness.

• The present results in the limiting case (β → ∞) are
found in excellent agreement with those of Mahap-
atra and Gupta [14] and Ishak et al. [20].
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