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The physical science importance of the Cauchy problem of the reaction-diffusion equation appears
in the modelling of a wide variety of nonlinear systems in physics, chemistry, ecology, biology,
and engineering. A hybrid of Fourier transform and Adomian decomposition method (FTADM) is
developed for solving the nonlinear non-homogeneous partial differential equations of the Cauchy
problem of reaction-diffusion. The results of the FTADM and the ADM are compared with the exact
solution. The comparison reveals that for the same components of the recursive sequences, the errors
associated with the FTADM are much lesser than those of the ADM. We show that as time increases
the results of the FTADM approaches 1 with only six recursive terms. This is in agreement with the
physical property of the density-dependent nonlinear diffusion of the Cauchy problem which is also
in agreement with the exact solution.

The monotonic and very rapid convergence of the results of the FTADM towards the exact solution
is shown to be much faster than that of the ADM.

Key words: Cauchy Reaction-Diffusion; Fourier Transformation; Adomian Decomposition Method;
Non-Homogeneous Partial Differential Equation.

1. Introduction

Cauchy problems of the reaction-diffusion equa-
tion have a distinct importance in physical science in
modelling nonlinear systems. Also spatial effects in
ecology are modelled by the Cauchy problems of the
reaction-diffusion equation. Different types of ecolog-
ical phenomena such as the minimal patch size neces-
sary to sustain a population, wave fronts propagation
of biological invasions, and the formation of spatial
patterns in the distributions of populations are sup-
ported and analyzed by nonlinear Cauchy problems
of the reaction-diffusion model. The nonlinear Cauchy
problems of reaction-diffusion equation are also used
in the modelling of nonlinear chemical reactions in
combustion phenomena. The nonlinear interactions be-
tween the convection and dispersion generating soli-
tary waves, compactions, are studied with aid of the
nonlinear Cauchy problems of the reaction-diffusion

model. Moreover, the complexity of the nonlinear na-
ture of these models devoted the researcher’s atten-
tion to the approximate solutions obtained by semi-
analytical methods [1 – 19]. Recently, Wazwaz and
other researchers [10 – 20] pioneered a modification
of the Adomian decomposition method (ADM). The
basic idea of the modified Adomian decomposition
method is to accelerate the convergence of the series
solution arising from the method [20]. However, the
solutions of these problems using the Adomian de-
composition method and other semi-analytical meth-
ods are valid only in the one-directional problem do-
main, either in time or in space. In other words, the
unsatisfied boundary conditions in the solutions of the
ADM and other semi-analytical methods play no role
in the final results [1 – 21]. The basic motivation of
the present work is to develop a new modified ADM
to overcome the deficiency caused due to the validity
of the solution in a small range of problem domain
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because the boundary conditions are satisfied only in
one dimension [1 – 21] when using the semi-analytical
methods such as ADM. The new modified ADM is de-
veloped by combining the Fourier transform (FT) and
ADM, where all conditions are satisfied over the en-
tire range of time and space problem domains. In the
present work, three different non-homogeneous linear
and nonlinear partial differential equations, the Cauchy
problems of the reaction-diffusion equation, are solved
using the new modified ADM, the so called FTADM.
The closed form solutions for the three partial differen-
tial equations which are the same as the exact solutions
of the problems are obtained. Furthermore, the trends
of very rapid convergence of the results toward the ex-
act solutions have been demonstrated.

2. Basic Idea of FTADM

The general forms of one-dimensional nonlinear
partial differential equations are considered for illus-
trating the basic idea of the FTADM. Consider the fol-
lowing differential equation:

E(u(x, t)) = 0 , x≥ 0 , t ≥ 0 . (1)

Usually, the operator E can be decomposed into two
parts, the linear operator L and the nonlinear operator
N,

L(u(x, t))+N(u(x, t)) = g(x) . (2)

Taking the Fourier transform from both sides of (2), we
get

F{L(u(x, t))}+F{N(u(x, t))}= F(g(x)) , (3)

where the symbol F denotes the Fourier trans-
form. Using the concept of Adomian decomposition
method [18, 19], the unknown function u(x, t) of the
linear operator L in (9) can be decomposed by a series
solution as [19 – 21]

u =
∞

∑
n=0

un,

L(u(x, t)) = L

(
∞

∑
n=0

un

)
.

(4)

For the nonlinear operator N in (2), we use the Tay-
lor series expansion to expand the nonlinear operator
N(u(x, t)) around u0 = u(x0, t0) as

N(u(x, t)) =
∞

∑
n=0

1
n!

(u−u0)nN(n)(u0) , (5)

where the superscript n indicates the order of derivative
with respect to the dependent variable u. Substituting
u = ∑

∞
n=0 un into (5) and rearranging terms, we get

N(u(x, t)) = N(u0)+
(
u1N′(u0)

)
+
(

u2N′(u0)

+
1
2!

u2
1N′′(u0)

)
+
(

u3N′(u0)+u1u2N′′(u0)

+
1
3!

u3
1N′′′(u0)

)
+
(

u4N′(u0)+
(

1
2!

u2
2 +u1u3

)
·N′′(u0)+

1
2!

u2
1u2N′′′(u0)+

1
4!

u4
1N(iv)(u0)

)
+ · · · .

(6)

Equation (6) can be rewritten as the series expansion
of the Adomian polynomial An as follows:

N(u(x, t)) =
∞

∑
n=0

An , (7)

where the Adomian polynomials An are defined as

An =
1
n!

dn

dλ n

[
N

(
n

∑
i=0

λ
iui

)]
λ=0

. (8)

Substituting (7) and (4) into (3), we obtain:

F

{
L

(
∞

∑
i=0

ui

)}
+F

{
∞

∑
i=0

Ai

}
= F(g(x)) , (9)

where the first five Adomian polynomials are

A0 = N(u0) ,
A1 = u1N′(u0) ,

A2 = u2N′(u0)+
1
2!

u2
1N′′(u0) ,

A3 = u3N′(u0)+u1u2N′′(u0)+
1
3!

u3
1N′′′(u0) ,

A4 = u4N′(u0)+
(

1
2!

u2
2 +u1u3

)
N′′(u0)

+
1
2!

u2
1u2N′′′(u0)+

1
4!

u4
1N(iv)(u0) .

(10)

Equation (9) can be rewritten in the following form:
∞

∑
i=0

F{L(ui)}+
∞

∑
i=0

F{Ai}= F{g} . (11)

Using (11), we introduce the recursive relation as

F{L(u0)}= F{g},
∞

∑
i=1

F{L(ui)}+
∞

∑
i=0

F{Ai}= 0 .
(12)
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The recursive equation (12) can be rewritten as

F{L(u0)}= F{g},
F{L(u1)}+F{A0}= 0 ,

F{L(u2)}+F{A1}= 0 ,

F{L(u3)}+F{A2}= 0 ,

F{L(uk)}+F{Ak−1}= 0 .

(13)

Using the Maple package, the first part of (13) gives
the value of F{u0}. Then applying the inverse Fourier
transform to F{u0} gives the value of u0 that will de-
fine the Adomian polynomial A0 using the first part
of (10). In the second part of (13) using the Adomian
polynomial A0 will enable us to evaluate the value of
F{u1}. Then applying the inverse Fourier transform to
F{u1} gives the value of u1 that will define the Ado-
mian polynomial A1 using the second part of (10) and
so on. This in turn will lead to the complete evaluation
of the components of uk, k ≥ 0, upon using different
corresponding parts of (13) and (10).

3. Case Study of the Cauchy Problem of
Reaction-Diffusion

We solve three one-dimensional transient and
non-homogeneous partial differential equations, the
Cauchy problem of reaction-diffusion, to demonstrate
the effectiveness and the validity of the presented
method FTADM in the entire range of problem do-
main. The Cauchy problem of the reaction-diffusion
equation expresses the mathematical model of the
influence of the chemical reaction which the sub-
stances transforms into each other and the diffusion
which the substances disperses over a surface in space.
This equation has wide applications in chemical engi-
neering, biology, geology, ecology, and physics. The
Cauchy problem of the reaction-diffusion equation in
the one-dimensional and time-dependent case is writ-
ten as [13, 21]

ut(x, t) = Duxx(x, t)+ r(x, t)u(x, t) , (14)

where u(x, t) is the concentration of the substances,
r(x, t) the reaction parameter at position x and time
t, and D is the diffusion coefficient. Equation (14) is
solved subject to the following initial and boundary
conditions:

u(x,0) = f (x) , (15)

u(0, t) = g0(t) , ux(0, t) = g1(t) . (16)

Example 1. The Kolmogorov–Petrovskii–Piskunov
(KPP) equation is obtained by taking D = 1, r(x, t) = 2t
in (14) as follows:

ut = uxx +2tu , x≥ 0 , t ≥ 0 ,

u(x,0) = e−x,

u(0, t) = et+t2
, ux(0, t) = et+t2

.

(17)

The Fourier transform of (17) is

ût(ω, t)+(ω2−2t)û(ω, t)+ et+t2
(iω +1) = 0 ,

û(ω,0) = 1/(1+ iω) .
(18)

Substituting the recursive equation (12) into (18), we
get

d
dt

∞

∑
n=0

ûn(ω, t)+(ω2−2t)
∞

∑
n=0

ûn(ω, t)

+ et+t2
(iω +1) = 0 ,

û(ω,0) = 1/(1+ iω) .

(19)

The recursive equation deduced from (19) can be writ-
ten as

û0t(ω, t)+ et+t2
(iω +1) = 0 , û0(ω,0) = 1/(1+ iω) ,

û1t(ω, t)+(ω2−2t)û0(ω, t) = 0 , û1(ω,0) = 0 ,

û2t(ω, t)+(ω2−2t)û1(ω, t) = 0 , û2(ω,0) = 0 ,

û3t(ω, t)+(ω2−2t)û2(ω, t) = 0 , û3(ω,0) = 0 ,
(20)

and so on. Solving the recursive equation (20) and
using the Maple package to take the inverse Fourier
transform, we obtain the following:

u0(x, t) = e−x,

u1(x, t) = e−x(t + t2) ,

u2(x, t) = e−x(t2/2+ t3 + t4/2) ,

u3(x, t) = e−x(t3/6+ t4/2+ t5/2+ t6/2) ,

(21)

and so on. Consequently, the solution of (17) in a series
form is given by

u(x, t) = e−x(1+(t + t2)+(t + t2)2/2

+(t + t2)3/6+ · · ·) .
(22)

The Taylor series expansion for et is written as

et =
∞

∑
n=0

tn

n!
. (23)
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By substituting (23) into (22), thus (22) can ultimately
be reduced to

u(x, t) = e−x et+t2
. (24)

Equation (24) is the exact solution of (17).

Example 2. The Kolmogorov–Petrovskii–Piskunov
(KPP) equation is obtained by taking D = 1, r(x, t) =
−(−1+4x2) in (14):

ut = uxx− (−1+4x2)u , x≥ 0 , t ≥ 0 ,

u(x,0) = e−x2
,

u(0, t) = e−t , ux(0, t) = 0 .

(25)

By applying the Fourier transform to (25), we obtain
the followings:

ût + iω e−t +(ω2−1−4∂
2/∂ω

2)û = 0 ,

û(ω,0) =
√

π/2e−
ω2
4 erf

(
iω
2

)
,

(26)

where erf(x) is the error function. Substituting the re-
cursive equation (12) into (26), we get

d
dt

∞

∑
n=0

ûn(ω, t)+(ω2−1−4∂
2/∂ω

2)

·
∞

∑
n=0

ûn(ω, t)+ iω e−t = 0 ,

û(ω,0) =
√

π/2e−
ω2
4 erf

(
iω
2

)
.

(27)

The recursive equation deduced from (27) can be
written as

û0t(ω, t)+ iω e−t = 0 ,

û0(ω,0) =
√

π/2e−
ω2
4 erf

(
iω
2

)
,

û1t(ω, t)+(ω2−1−4∂
2/∂ω

2)û0(ω, t) = 0 ,

û1(ω,0) = 0 ,

û2t(ω, t)+(ω2−1−4∂
2/∂ω

2)û1(ω, t) = 0 ,

û2(ω,0) = 0 ,

û3t(ω, t)+(ω2−1−4∂
2/∂ω

2)û2(ω, t) = 0 ,

û3(ω,0) = 0 ,

(28)

and so on. Solving the recursive equation (28) and
using the Maple package to take the inverse Fourier

transform, we obtain

u0 = e−x2
,

u1 = e−x2
(−t) ,

u2 = e−x2
(t2/2) ,

u3 = e−x2
(−t3/6) ,

(29)

and so on. Consequently, the solution of (25) in a series
form is given by

u(x, t) = e−x2
(1− t +(t2/2)− (t3/6)+ · · ·) . (30)

The Taylor series expansion for e−t is written as

e−t =
∞

∑
n=0

(−1)ntn/n! . (31)

Substituting (31) into (30), the closed form solution
of (25) is given by

u(x, t) = e−(x2+t). (32)

Equation (32) is the exact solution of the problem.
Tables 1 and 2 show the comparison of the trend of

convergence of the results for S2(x, t) = ∑
2
i=0 ui(x, t),

S4(x, t) = ∑
4
i=0 ui(x, t), and S6(x, t) = ∑

6
i=0 ui(x, t)

using the ADM and FTADM of (17) and (25) to-
wards the exact solution, respectively. The monotonic
and very rapid convergence of the solution using the
FTADM towards the exact solution is clearly shown
when compared to that of the ADM. Tables 1 and 2 also
show that the relative errors of the ADM increase as
the x-axis coordinates increase, so the ADM solution
validity range is restricted to just a short region. On the
other hand, results of the FTADM solution are valid for
a large range of x-coordinates, and moreover the rela-
tive errors of the FTADM results are much lesser than
those of the ADM solution.

Example 3. An interesting model for the insect popu-
lation dispersal is the nonlinear Cauchy problem of the
reaction-diffusion equation. Most often the diffusion
coefficient term depends on the dependent variable.
This is called the density-dependent diffusion and is
very important in a wide range of physical sciences es-
pecially in the study of the insect population dispersal
model. In this example, the density dependent nonlin-
ear Cauchy problem of the reaction-diffusion equation
is solved using the FTADM. Consider the following
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Table 1. Comparison of the relative errors of the results of S2(x, t) = ∑
2
i=0 ui(x, t) , S4(x, t) = ∑

4
i=0 ui(x, t), and S6(x, t) =

∑
6
i=0 ui(x, t) of the ADM and FTADM solution of (17) at each location along the x-axis and at different times.

Percentage of relative error (%RE)
x = 2.5 x = 3 x = 4 x = 6 x = 7 x = 9 x = 11

t = 0.1

S2(x, t)
ADM 141 368.5 2339 72535 3.6 ·10+5 7.5 ·10+6 1.3 ·10+8

FTADM 2.04 ·10−4 2.04 ·10−4 2.04 ·10−4 2.04 ·10−4 2.04 ·10−4 2.04 ·10−4 2.04 ·10−4

S4(x, t)
ADM 147 401 2955 1.5 ·10+5 9.9 ·10+5 3.8 ·10+7 1.2 ·10+9

FTADM 1.2 ·10−7 1.2 ·10−7 1.2 ·10−7 1.2 ·10−7 1.2 ·10−7 1.2 ·10−7 1.2 ·10−7

S6(x, t)
ADM 147 402 2979 1.6 ·10+5 1.1 ·10+6 6.08 ·10+7 2.8 ·10+9

FTADM 3.5 ·10−11 3.5 ·10−11 3.5 ·10−11 3.5 ·10−11 3.5 ·10−11 3.5 ·10−11 3.5 ·10−11

t = 0.3

S2(x, t)
ADM 141 368.5 2339 72535 3.6 ·10+5 7.5 ·10+6 1.3 ·10+8

FTADM 7.4 ·10−3 7.4 ·10−3 7.4 ·10−3 7.4 ·10−3 7.4 ·10−3 7.4 ·10−3 7.4 ·10−3

S4(x, t)
ADM 147 401 2955 1.5 ·10+5 9.9 ·10+5 3.8 ·10+7 1.2 ·10+9

FTADM 5.4 ·10−5 5.4 ·10−5 5.4 ·10−5 5.4 ·10−5 5.4 ·10−5 5.4 ·10−5 5.4 ·10−5

S6(x, t)
ADM 147 402 2979 1.6 ·10+5 1.1 ·10+6 6.08 ·10+7 2.8 ·10+9

FTADM 1.9 ·10−7 1.9 ·10−7 1.9 ·10−7 1.9 ·10−7 1.9 ·10−7 1.9 ·10−7 1.9 ·10−7

t = 0.5

S2(x, t)
ADM 141 368.5 2339 72535 3.6 ·10+5 7.5 ·10+6 1.3 ·10+8

FTADM 4 ·10−2 4 ·10−2 4 ·10−2 4 ·10−2 4 ·10−2 4 ·10−2 4 ·10−2

S4(x, t)
ADM 147 401 2955 1.5 ·10=5 9.9 ·10+5 3.8 ·10+7 1.2 ·10+9

FTADM 1.1 ·10−3 1.1 ·10−3 1.1 ·10−3 1.1 ·10−3 1.1 ·10−3 1.1 ·10−3 1.1 ·10−3

S6(x, t)
ADM 147 402 2979 1.6 ·10+5 1.1 ·10+6 6.08 ·10+7 2.8 ·10+9

FTADM 1.3 ·10−5 1.3 ·10−5 1.3 ·10−5 1.3 ·10−5 1.3 ·10−5 1.3 ·10−5 1.3 ·10−5

Table 2. Comparison of the relative errors of the results of S2(x, t) = ∑
2
i=0 ui(x, t), S4(x, t) = ∑

4
i=0 ui(x, t), and S6(x, t) =

∑
6
i=0 ui(x, t) of the ADM and FTADM solution of (25) at each location along the x-axis and at different times.

Percentage of relative error (%RE)
x = 2.5 x = 3 x = 4 x = 6 x = 7 x = 9 x = 11

t = 0.1

S2(x, t)
ADM 6543 6.1 ·10+5 9.2 ·10+9 1.4 ·10+20 2.2 ·10+26 1.4 ·10+41 1.7 ·10+59

FTADM 1.7 ·10−4 1.7 ·10−4 1.7 ·10−4 1.7 ·10−4 1.7 ·10−4 1.7 ·10−4 1.7 ·10−4

S4(x, t)
ADM 1631 9.2 ·10+5 1.9 ·10+11 9.9 ·10+22 5.7 ·10+29 2.8 ·10+45 1.7 ·10+64

FTADM 9.1 ·10−8 9.1 ·10−8 9.1 ·10−8 9.1 ·10−8 9.1 ·10−8 9.1 ·10−8 9.1 ·10−8

S6(x, t)
ADM 55 2.07 ·10+5 6.16 ·10+11 1 ·10+25 2.2 ·10+32 8.3 ·10+48 2.6 ·10+68

FTADM 2.16 ·10−11 2.16 ·10−11 2.16 ·10−11 2.16 ·10−11 2.16 ·10−11 2.16 ·10−11 2.16 ·10−11

t = 0.3

S2(x, t)
ADM 6543 6.1 ·10+5 9.2 ·10+9 1.4 ·10+20 2.2 ·10+26 1.4 ·10+41 1.7 ·10+59

FTADM 5.6 ·10−3 5.6 ·10−3 5.6 ·10−3 5.6 ·10−3 5.6 ·10−3 5.6 ·10−3 5.6 ·10−3

S4(x, t)
ADM 1631 9.3 ·10+5 1.9 ·10+11 9.9 ·10+22 5.7 ·10+29 2.8 ·10+45 1.7 ·10+64

FTADM 2.6 ·10−5 2.6 ·10−5 2.6 ·10−5 2.6 ·10−5 2.6 ·10−5 2.6 ·10−5 2.6 ·10−5

S6(x, t)
ADM 55 2.07 ·10+5 6.16 ·10+11 1 ·10+25 2.2 ·10+32 8.3 ·10+48 2.6 ·10+68

FTADM 5.6 ·10−8 5.6 ·10−8 5.6 ·10−8 5.6 ·10−8 5.6 ·10−8 5.6 ·10−8 5.6 ·10−8

t = 0.5

S2(x, t)
ADM 6543 6.1 ·10+5 9.2 ·10+9 1.4 ·10+20 2.2 ·10+26 1.4 ·10+41 1.7 ·10+59

FTADM 3 ·10−2 3 ·10−2 3 ·10−2 3 ·10−2 3 ·10−2 3 ·10−2 3 ·10−2

S4(x, t)
ADM 1631 9.3 ·10+5 1.9 ·10+11 9.9 ·10+22 5.7 ·10+29 2.8 ·10+45 1.7 ·10+64

FTADM 3.9 ·10−4 3.9 ·10−4 3.9 ·10−4 3.9 ·10−4 3.9 ·10−4 3.9 ·10−4 3.9 ·10−4

S6(x, t)
ADM 55 2.07 ·10+5 6.16 ·10+11 1 ·10+25 2.1 ·10+32 8.3 ·10+48 2.6 ·10+68

FTADM 2.4 ·10−6 2.4 ·10−6 2.4 ·10−6 2.4 ·10−6 2.4 ·10−6 2.4 ·10−6 2.4 ·10−6
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Table 3. Comparison of the relative errors of the results of S2(x, t) = ∑
2
i=0 ui(x, t), S4(x, t) = ∑

4
i=0 ui(x, t), and S6(x, t) =

∑
6
i=0 ui(x, t) of the ADM and FTADM solution of (33) at each location along the x-axis and at different times.

Percentage of relative error (%RE)
x = 2.5 x = 3 x = 4 x = 6 x = 7 x = 9 x = 11

t = 0.1

S2(x, t)
ADM 8 ·10−4 9 ·10−4 1 ·10−3 1.1 ·10−3 1.2 ·10−3 1.2 ·10−3 1.2 ·10−3

FTADM 4.1 ·10−6 2.7 ·10−6 1.2 ·10−6 2.9 ·10−7 1.4 ·10−7 3.5 ·10−8 8.6 ·10−9

S4(x, t)
ADM 8.3 ·10−6 9.8 ·10−6 1.1 ·10−5 1.2 ·10−5 1.3 ·10−5 1.3 ·10−5 1.3 ·10−5

FTADM 5.3 ·10−10 3.5 ·10−10 1.6 ·10−10 3.8 ·10−11 1.8 ·10−11 4.5 ·10−12 1.1 ·10−12

S6(x, t)
ADM 8 ·10−8 1 ·10−7 1.22 ·10−7 1.37 ·10−7 1.4 ·10−7 1.41 ·10−7 1.42 ·10−7

FTADM 3 ·10−14 2 ·10−14 9.6 ·10−15 2.2 ·10−15 1.09 ·10−15 2.6 ·10−16 6.4 ·10−17

t = 0.3

S2(x, t)
ADM 3.2 ·10−2 3.6 ·10−2 3.9 ·10−2 4.2 ·10−2 4.2 ·10−2 4.2 ·10−2 4.3 ·10−2

FTADM 1 ·10−4 7.2 ·10−5 3.3 ·10−5 7 ·10−6 3 ·10−6 9.3 ·10−7 2.27 ·10−7

S4(x, t)
ADM 3.3 ·10−3 3.9 ·10−3 4.6 ·10−3 5.1 ·10−3 5.2 ·10−3 5.2 ·10−3 5.2 ·10−3

FTADM 1.2 ·10−7 8.3 ·10−8 3.8 ·10−8 8.9 ·10−9 4.4 ·10−9 1.1 ·10−9 2.6 ·10−10

S6(x, t)
ADM 3.5 ·10−4 4.5 ·10−4 5.5 ·10−4 6.2 ·10−4 6.3 ·10−4 6.3 ·10−4 6.4 ·10−4

FTADM 6.65 ·10−11 4.44 ·10−11 2.07 ·10−11 4.84 ·10−12 2.37 ·10−12 5.74 ·10−13 1.39 ·10−13

t = 0.5

S2(x, t)
ADM 2.0 ·10−1 2.3 ·10−1 2.5 ·10−1 2.6 ·10−1 2.7 ·10−1 2.7 ·10−1 2.7 ·10−1

FTADM 4.8 ·10−4 3.2 ·10−4 1.5 ·10−4 3.5 ·10−5 1.7 ·10−5 4 ·10−6 1 ·10−6

S4(x, t)
ADM 7.3 ·10−2 8.6 ·10−2 1.0 ·10−1 1.1 ·10−1 1.1 ·10−1 1.1 ·10−1 1.1 ·10−1

FTADM 1.5 ·10−6 1.0 ·10−6 4.8 ·10−7 1.1 ·10−7 5.6 ·10−8 1.3 ·10−8 3.2 ·10−9

S6(x, t)
ADM 2.6 ·10−2 3.4 ·10−2 4.2 ·10−2 4.7 ·10−2 4.7 ·10−2 4.8 ·10−2 4.8 ·10−2

FTADM 2.3 ·10−9 1.55 ·10−9 7.27 ·10−10 1.70 ·10−10 8.36 ·10−11 2.02 ·10−11 4.91 ·10−12

nonlinear Cauchy problem of the differential equation
as follows:

ut = (uux)x +u(1−u) , x≥ 0 , t ≥ 0 ,

u(x,0) = 1− e
− x√

2 ,

u(0, t) = 1− e−
t
2 , ux(0, t) = 1/

√
2e−

t
2 .

(33)

By applying the Fourier transform to (33), we obtain

ût − û+(1+ω
2/2)F{u2}+(1/

√
2)e−

t
2
(
1− e−

t
2
)

+(iω/2)(1− e−
t
2 )2 = 0 ,

û(ω,0) = πδ (ω)− i
√

2/ω(2iω +
√

2) ,

(34)

where the superscript on the dependent variable u indi-
cates the Fourier transform; F{u2} is the Fourier trans-
form of u2, and δ (ω) is the Dirac delta function. By
substituting (12) into (34), we get

d
dt

∞

∑
n=0

ûn(ω, t) =
∞

∑
n=0

ûn(ω, t)− (1+ω
2)

∞

∑
n=0

Ân(ω, t)

− 1√
2

e−
t
2
(
1− e−

t
2
)
− (iω/2)

(
1− e−

t
2
)2

,

û(ω,0) = πδ (ω)− i
√

2/ω(2iω +
√

2) .

(35)

The recursive equation deduced from (35) can be
written as

û0t(ω, t)+1/
√

2e−
t
2
(
1− e−

t
2
)
+(iω2)

(
1− e−

t
2
)2 =0 ,

û0(ω,0) = πδ (ω)− i
√

2/ω(2iω +
√

2) ,

û1t(ω, t) = û0(ω, t)− (ω2 +1)Â0(ω, t) ,
û1(ω,0) = 0 ,

û2t(ω, t) = û1(ω, t)− (ω2 +1)Â1(ω, t) ,
û2(ω,0) = 0 ,

û3t(ω, t) = û2(ω, t)− (ω2 +1)Â2(ω, t) ,
û3(ω,0) = 0 ,

(36)

and so on. Solving the recursive equation (36) and
using the Maple package to take the inverse Fourier
transform, we obtain

u0(ω, t) = 1− e
− x√

2 ,

u1(ω, t) = (1/2)t e
− x√

2 ,

u2(ω, t) =−(1/8)t2 e
− x√

2 ,

u3(ω, t) = (1/48)t3 e
− x√

2 ,

(37)
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and so on. Consequently, the solution of (33) in
a series form is given by

u(x, t) = 1− e
− x√

2 +(1/2)t e
− x√

2 − (1/8)t2 e
− x√

2

+(1/48)t3 e
− x√

2 .
(38)

The Taylor series expansion for

(
1− e

−
x+ t√

2√
2

)
is

written as(
1− e

−
x+ t√

2√
2

)
= 1− e

− x√
2 +(1/2)t e

− x√
2

− (1/8)t2 e
− x√

2 +(1/48)t3 e
− x√

2 + · · · .

(39)

Substituting (39) into (38), the closed form solution
of (33) is given by

u(x, t) = 1− e
−

x+ t√
2√

2 . (40)

Equation (40) is the exact solution of (33). Table 3
shows the comparison of the trend of convergence
and the relative errors of the results of S2(x, t) =
∑

2
i=0 ui(x, t), S4(x, t) = ∑

4
i=0 ui(x, t), and S6(x, t) =

∑
6
i=0 ui(x, t) of the ADM and FTADM solutions of (33)

towards the exact solution at each location along the
x-axis and at different times. The trend of very rapid
convergence of the solution using the FTADM towards
the exact solution is clearly shown when compared to

Fig. 1 (colour online). Variations of the results using the FTADM solution of (33) with six recursive terms.

that of the ADM. Table 3 also shows that the relative
errors associated with the ADM are increased as one
moves along the x-axis, so the results of the ADM
solution validity range is restricted to just a short re-
gion. On the other hand, for the nonlinear case, the
relative errors associated with the FTADM are de-
creased rapidly as one moves along the x-axis, so the
results of the FTADM solution are valid for a wide
range of x-axis coordinates, and the relative errors of
the FTADM are much lesser than those of the ADM
solution. Moreover, for the bounded initial condition,
the solution of the nonlinear Cauchy problem of the
reaction-diffusion found to be approaching 1 as time
approaches infinity, t → ∞. This is an important phys-
ical property of the density-dependent nonlinear diffu-
sion of the Cauchy problem. Figure 1 shows that, as
time increases, the results of the FTADM approaches 1
with only six recursive terms. This is in agreement with
the physical property of the density-dependent nonlin-
ear diffusion of the Cauchy problem which is also in
agreement with the exact solution. In Table 4, the root-
mean square (RMS) errors of the results for S6(x, t) =
∑

6
i=0 ui(x, t) are calculated for ADM and FTADM. The

RMS error for the first seven terms of the series so-
lution for the ADM is much greater than that of the
FTADM. This means the fast rate of convergence of
the FTADM in comparison with the ADM. This in fact
shows the effectiveness of the FTADM in handling the
nonlinear differential equations in comparison with the
ADM.
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Table 4. Comparison of the RMS errors of the results of
S6(x, t) = ∑

6
i=0 ui(x, t) of the ADM and FTADM solution

of (33) at different times and locations.

t = 0.1 t = 0.3 t = 0.5
RMS error of the 3.03 ·10−8 5.6 ·10−4 4.25 ·10−2

ADM method

RMS error of the 1.4 ·10−14 3.1 ·10−11 1.09 ·10−9

FTADM method

4. Conclusions

In this paper, a new effective modification of the
ADM, the Fourier transform Adomian decomposition
method (FTADM), is proposed. The new modification
of the ADM is the combination of the Fourier trans-
form and the Adomian decomposition method. The

comparison of the results for the linear and nonlin-
ear Cauchy problems of reaction-diffusion using the
FTADM with those of the ADM shows that the errors
associated with the FTADM are much lesser than those
of the ADM. Table 4 gives the values of the RMS er-
rors of the results for the nonlinear problem for the
FTADM and ADM. The values of the RMS errors
show the fast rate of convergence of the FTADM in
comparison with the ADM. Moreover, for the results
of nonlinear Cauchy problem of reaction-diffusion as
time approaches infinity, t→ ∞, the solution using the
FTADM approaches 1 with only six recursive terms.
The very rapid convergence of the results towards the
exact solutions using the FTADM indicates that the
amount of computational work is much lesser than the
computational work required for the previous ADM.
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