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Lower and upper bounds for the Laplacian energy-like (LEL) molecular structure descriptor are
obtained, better than those previously known. These bonds are in terms of number of vertices and
edges of the underlying molecular graph and of graph complexity (number of spanning trees).
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1. Introduction

The total π-electron energy is a quantum-chemical
characteristic of conjugated molecules that is ex-
amined in theoretical chemistry for more than
50 years [1 – 3]. The mathematical re-formulation of
this quantity is the graph energy E(G) which also was
extensively studied in the last 10 – 20 years [4, 5]. The
graph energy is defined as

E = E(G) =
n

∑
i=1
|λi| ,

where n is the number of vertices of the graph G, and
λ1,λ2, . . .,λn are its eigenvalues [1, 4, 5]. Two elemen-
tary properties of the graph energy are E(G1 ∪G2) =
E(G1) + E(G2) for G1 ∪G2 being the graph consist-
ing of two disconnected components G1 and G2, and
E(G∪K1) = E(G), where K1 is the graph with a sin-
gle vertex.

Motivated by the success of the graph-energy con-
cept, and in order to extend it to the Laplacian eigen-
values, the Laplacian energy LE(G) was put forward,
defined as [6]

LE = LE(G) =
n

∑
i=1

∣∣∣∣µi−
2m
n

∣∣∣∣ ,
where G is a graph with n vertices and m edges, and
µ1,µ2, . . .,µn are its Laplacian eigenvalues. The Lapla-
cian energy has two major drawbacks: Namely, neither
LE(G1 ∪G2) = LE(G1) + LE(G2) holds in the gen-
eral case, nor is the condition LE(G∪K1) = LE(G)

satisfied. In order to overcome these difficulties, Liu
and Liu invented the Laplacian energy-like invariant
LEL(G), defined as [7]

LEL = LEL(G) =
n

∑
i=1

√
µi .

Indeed, the relations LEL(G1 ∪ G2) = LEL(G1) +
LEL(G2) and LEL(G∪K1) = LEL(G) are generally
valid.

The theory of LEL is nowadays well developed;
details and further references can be found in the re-
view [8]. In particular, numerous correlations between
LEL and physico-chemical properties of alkanes were
reported [9]. It was shown that, in spite of its name,
LEL resembles more the total π-electron energy than
the Laplacian energy LE [10]. Also worth mentioning
is the discovery that LEL is closely related with (and in
the case of bipartite graphs identical to) the incidence
energy (IE) of the same graph [11 – 13].

Several bounds for LEL and IE have been re-
ported [6, 13 – 15] of which for the present work the
following are important [6]:

√
2m≤ LEL(G)≤

√
2m(n−1) . (1)

We now show how the estimates (1) can be improved.

2. Better Bounds for LEL

In what follows, we shall need the few well-known
properties of the Laplacian eigenvalues [16 – 19]:
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1. If the graph G is connected (which necessarily is the
case with molecular graphs [1]), then n− 1 Lapla-
cian eigenvalues are positive, and one is equal to
zero. Thus, we can label the Laplacian eigenvalues
so that µ1 ≥ µ2 ≥ ·· · ≥ µn−1 > µn = 0.

2. If the graph G has m edges, then µ1 +µ2 + · · ·+µn =
2m.

3. If the graph G has n vertices and t spanning
trees [20], then

t =
1
n

n−1

∏
i=1

µi . (2)

Recall that the count of spanning trees is sometimes
referred to as the complexity of the graph. For its chem-
ical applications see the works [21, 22] and the refer-
ences cited therein.

Our starting point is Kober’s inequality [23]. Let
x1,x2, . . .,xN be non-negative numbers, and let

α =
1
N

N

∑
i=1

xi and γ =

(
N

∏
i=1

xi

)1/N

be their arithmetic and geometric means. As well
know, α ≥ γ i. e., α− γ > 0, with equality if and only
x1 = x2 = · · ·= xN . Kober [23] established the follow-
ing bounds for the difference α− γ :

1
N(N−1) ∑

i< j

(√
xi−
√

x j
)2

≤ α− γ ≤ 1
N ∑

i< j

(√
xi−
√

x j
)2

.
(3)

Now, by setting N = n and xi = µi, i = 1,2, . . .,n, we
immediately obtain

∑
i< j

(√
µi−
√

µ j
)2 =

1
2

n

∑
i=1

n

∑
j=1

(
µi + µ j−2

√
µiµ j

)
=

1
2

(
n

n

∑
i=1

µi +n
n

∑
j=1

µ j

)
−

(
n

∑
i=1

√
µi

)(
n

∑
j=1

√
µ j

)
= 2nm−LEL2.

Since, in addition,

α =
1
n

n

∑
i=1

µi =
2m
n

and γ =

(
n

∏
i=1

µi

)1/n

= 0 ,

inequalities (3) imply

2mn−LEL2

n(n−1)
≤ 2m

n
≤ 2mn−LEL2

n

from which the estimates (1) immediately follow.
Thus, nothing new has been obtained.

If, however, we take into account the fact that
µn = 0, and therefore

LEL =
n−1

∑
i=1

√
µi ;

n−1

∑
i=1

µi = 2m ,

then we can set N = n−1 and xi = µi, i = 1,2, . . .,n−1,
which in view of (2) results in

α =
1

n−1

n−1

∑
i=1

µi =
2m

n−1
,

γ =

(
n−1

∏
i=1

µi

)1/(n−1)

= (nt)1/(n−1)

and

∑
i< j

(√
µi−
√

µ j

)2
=

1
2

n−1

∑
i=1

n−1

∑
j=1

(
µi + µ j−2

√
µiµ j

)
=

1
2

(
(n−1)

n

∑
i=1

µi +(n−1)
n

∑
j=1

µ j

)

−

(
n−1

∑
i=1

√
µi

)(
n−1

∑
j=1

√
µ j

)
= 2(n−1)m−LEL2 .

Kober’s inequality yields now

2m(n−1)−LEL2

(n−1)(n−2)
≤ 2m

n−1
− (nt)1/(n−1)

≤ 2m(n−1)−LEL2

n−1

from which follows√
4m(n−1)

n
+(n−1)(n−2)(nt)1/(n−1) ≤ LEL

≤
√

2m(n−1)2

n
+(n−1)(nt)1/(n−1) .

(4)

It is not too difficult to see that the estimates (4) are
narrower than those given by (1). Indeed,√

4m(n−1)
n

+(n−1)(n−2)(nt)1/(n−1)

≥
√

4m(n−1)
n

>
√

2m ,
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where the latter inequality holds for n ≥ 3. Therefore
the lower bound in (4) is better than in (1).

For molecular graphs (and, in general, for graphs
with small number of edges) [20], the number of span-
ning trees is either a constant (as in the case of trees)
or increases as a linear function of n. In both cases the
term β = (nt)1/(n−1) is practically independent of n
and is not much greater than unity (β ≈ 1). Bearing
this in mind, we have√

2m(n−1)2

n
+(n−1)(nt)1/(n−1)

=

√(
2m− 2m

n
+β

)
(n−1) .

The upper bound in (4) will be better than that in (1)
if 2m− (2m/n)+β < 2m i. e., if β −2m/n < 0. Since
2m/n is the average vertex degree, which for molecular
graphs is around two or greater than two, and since
β ≈ 1, we see that for molecular graphs the condition
β −2m/n < 0 is always satisfied.

For disconnected graphs, for which t = 0, the esti-
mates (4) are simplified as√

4m(n−1)
n

≤ LEL≤ (n−1)

√
2m
n

.

Another simplification of (4) is obtained for trees.

3. Bounds for LEL of Trees

Trees are connected acyclic graphs [1]. A tree with n
vertices has n−1 edges and a unique spanning tree (t =
1). In view of this, for trees the estimates (4) reduce to√

4m(n−1)
n

+ n−1
√

n(n−1)(n−2)

≤ LEL≤
√

2m(n−1)2

n
+ n−1
√

n(n−1) .

(5)

The limit value of n−1
√

n for n→ ∞ is equal to unity.
Therefore, for trees with large values of vertices, the
term n−1

√
n could be left out from the bounds (5).

However, in real chemical applications [9] we are in-
terested in molecular graphs with relatively small val-
ues of n, say between 5 and 15. Because 4

√
5≈ 1.5 and

14
√

15≈ 1.2, for practical purposes one could safely use
the much simpler bounds√

4m(n−1)
n

+1.2(n−1)(n−2)

≤ LEL≤
√

2m(n−1)2

n
+1.5(n−1) .
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