Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 7, 2015

Electrochemical Methods for Total Antioxidant Capacity and its Main Contributors Determination: A review

  • Aurelia Magdalena Pisoschi , Carmen Cimpeanu and Gabriel Predoi
From the journal Open Chemistry

Abstract

Backround: The present review focuses on electrochemical methods for antioxidant capacity and its main contributors assessment. The main reactive oxygen species, responsible for low density lipoprotein oxidation, and their reactivity are reminded. The role of antioxidants in counteracting the factors leading to oxidative stress-related degenerative diseases occurence, is then discussed. Antioxidants can scavenge free radicals, can chelate pro-oxidative metal ions, or quench singlet oxygen. When endogenous factors (uric acid, bilirubin, albumin, metallothioneins, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase) cannot accomplish their protective role against reactive oxygen species, the intervention of exogenous antioxidants (vitamin C, tocopherols, flavonoids, carotenoids etc) is required, as intake from food, as nutritional supplements or as pharmaceutical products.

Literature study: The main advantages of electrochemical methods with respect to traditional, more laborious instrumental techniques are described: sensitivity, rapidity, simplicity of the applied analytical procedure which does not require complicated sample pre-treatment etc.

The paper reviews minutiously the voltammetric, amperometric, biamperometric, potentiometric and coulometric methods for total antioxidant capacity estimation. For each method presented, the electroactivity and the mechanism of electro-oxidation of antioxidant molecules at various electrodes, as well as the influences on the electroactive properties are discussed. The characteristics of the developed methods are viewed from the perspective of the antioxidant molecule structure influence, as well as from the importance of electrode material and/or surface groups standpoint.

The antioxidant molecule-electrode surface interaction, the detection system chosen, the use of modifiers, as well as the nature of the analysed matrix are the factors discussed, which influence the performances of the studied electrochemical techniques.

Conclusions: The electrochemical methods reviewed in this paper allow the successful determination of the total antioxidant capacity and of its main contributors in various media: foodstuffs and beverages, biological fluids, pharmaceuticals. The advantages and disadvantages of the electrochemical methods applied to antioxidant content and antioxidant activity assay are treated and interpreted, in the case of various analysed matrixes. Combining advanced materials with classical electrode construction, provides viable results and can constitute an alternative for the future.

Graphical Abstract

References

[1] Gülçin I., Antioxidant activity of food constituents: an overview, Arch. Toxicol., 2012, 86, 345–391. 10.1007/s00204-011-0774-2Search in Google Scholar PubMed

[2] Beretta G., Facino R.M., Recent advances in the assessment of the antioxidant capacity of pharmaceutical drugs: from in vitro to in vivo evidence, Anal. Bioanal. Chem., 2010, 398, 67–75. 10.1007/s00216-010-3829-ySearch in Google Scholar PubMed

[3] Jones D.P., Radical-free biology of oxidative stress, Am. J. Physiol. Cell-Physiol., 2008, 296, C849–C868. 10.1152/ajpcell.00283.2008Search in Google Scholar PubMed PubMed Central

[4] Davies K.J., Oxidative stress: the paradox of aerobic life, Biochem. Soc. Symp., 1995, 61, 1–31. 10.1042/bss0610001Search in Google Scholar PubMed

[5] Gülçin I., Antioxidant and antiradical activities of L-Carnitine, Life Sci., 2006, 78, 803–811. 10.1016/j.lfs.2005.05.103Search in Google Scholar PubMed

[6] Elmastas M., Gülçin I., Beydemir S., Küfrevioğlu Ő.I., Aboul- Enein H.Y., A study on the in vitro antioxidant activity of juniper (Juniperus communis L.) seeds extracts, Anal. Lett., 2006, 39, 47–65. 10.1080/00032710500423385Search in Google Scholar

[7] Gülçin I., Antioxidant properties of resveratrol: a structure activity insigh, Innov. Food. Sci. Emerg., 2010, 11, 210–218. 10.1016/j.ifset.2009.07.002Search in Google Scholar

[8] Halliwell B., Gutteridge J.M.C., Free radicals in biology and medicine, Fourth Edition, Oxford University Press, Oxford, 2007. Search in Google Scholar

[9] Ames B.N., Shigenaga M.K., Hagen T.M., Oxidants, antioxidants, and the degenerative diseases of aging, Proc. Natl. Acad. Sci. USA, 1993, 90, 7915–7922. 10.1073/pnas.90.17.7915Search in Google Scholar PubMed PubMed Central

[10] Pietta P.G., Flavonoids as antioxidants, J. Nat. Prod., 2000, 63, 1035–1042. 10.1021/np9904509Search in Google Scholar PubMed

[11] Korotkova E.I., Voronova O.A., Dorozhko E.V., Study of antioxidant properties of flavonoids by voltammetry, J. Solid State Electrochem., 2012, 16, 2435–2440. 10.1007/s10008-012-1707-6Search in Google Scholar

[12] Forest S.E., Stimson M.J., Simon J.D., Mechanism for the photochemical production of superoxide by quinacrine, J. Phys. Chem. B, 1999, 103, 3963–3964. 10.1021/jp9902809Search in Google Scholar

[13] Shahidi F., Janitha P.K., Wanasundara P.D., Phenolic antioxidants, Crit. Rev. Food Sci. Nutr., 1992, 32, 67–103. 10.1080/10408399209527581Search in Google Scholar PubMed

[14] Gülçin I., Elias R., Gepdiremen A., Boyer L., Antioxidant activity of lignans from fringe tree (Chionanthus virginicus L.), Eur. Food Res. Technol., 2006, 223, 759–767. 10.1007/s00217-006-0265-5Search in Google Scholar

[15] Huang D., Ou B., Prior R.L., The chemistry behind antioxidant capacity assays, J. Agric. Food Chem., 2005, 53, 1841-1856. 10.1021/jf030723cSearch in Google Scholar PubMed

[16] Halliwell B., How to characterize a biological antioxidant, Free Radical Res. Commun., 1990, 9, 1-32. 10.3109/10715769009148569Search in Google Scholar PubMed

[17] Rimm E.B., Ascherio A., Giovannucci E., Spiegalman D., Stampfer M., Willett W., Vegetable, fruits, and cereal fiber intake and risk of coronary heart disease among men, J.A.M.A., 1996, 275, 447–451. 10.1001/jama.275.6.447Search in Google Scholar

[18] Rimm E.B., Katan M.B., Ascherio A., Stampfer M.J., Willett W., Relation between intake of flavonoids and risk for coronary heart disease in male health professionals, Ann. Intern. Med., 1996, 125, 384–389. 10.7326/0003-4819-125-5-199609010-00005Search in Google Scholar PubMed

[19] Eberhardt M.V., Lee C.Y., Liu R.H., Antioxidant activity of fresh apples, Nature, 2000, 405, 903–904. 10.1038/35016151Search in Google Scholar PubMed

[20] Ganesan K., Kumar K.S., Rao P.V.S., Comparative assessment of antioxidant activity in three edible species of green seaweed, Enteromorpha from Okha, northwest coast of India, Innov. Food. Sci. Emerg., 2011, 12, 73–78. 10.1016/j.ifset.2010.11.005Search in Google Scholar

[21] Bocco A., Cuvelier M.E., Richard, H., Berset C., Antioxidant activity and phenolic composition of citrus peel and seed extracts, J. Agric. Food. Chem., 1998, 46, 2123–2129. 10.1021/jf9709562Search in Google Scholar

[22] Paganga G., Miller N., Rice-Evans C.A., The polyphenolic content of fruits and vegetables and their antioxidant activities. What does a serving constitute?, Free Radical. Res., 1999, 30, 153–162. 10.1080/10715769900300161Search in Google Scholar PubMed

[23] Pisoschi A.M., Cheregi M.C., Danet A.F., Total antioxidant capacity of some commercial fruit juices: electrochemical and spectrophotometrical approaches, Molecules, 2009, 14, 480-493. 10.3390/molecules14010480Search in Google Scholar PubMed PubMed Central

[24] Lanina S.A., Toledo P., Sampels S., Kamal-Eldin A., Jastrebova J.A., Comparison of reversed-phase liquid chromatography mass spectrometry with electrospray and atmospheric pressure chemical ionization for analysis of dietary tocopherols, J. Chromatogr. A, 2007, 1157, 159-170. 10.1016/j.chroma.2007.04.058Search in Google Scholar PubMed

[25] Barroso M.F., de-los-Santos-Álvarez N., Lobo-Castañón M.J., Miranda-Ordieres A.J., Delerue-Matos C., Oliveira M.B.P.P., Tuñón-Blanco P., DNA-based biosensor for the electrocatalytic determination of antioxidant capacity in beverages, Biosens. Bioelectron., 2011, 26, 2396–2401. 10.1016/j.bios.2010.10.019Search in Google Scholar PubMed

[26] Vertuani S., Angusti A., Manfredini S., The antioxidants and proantioxidants network: an overview, Curr. Pharm. Des., 2004, 10, 1677–1694. 10.2174/1381612043384655Search in Google Scholar PubMed

[27] Dopico-Garcìa M.S., Lòpez-Vilarinõ J.M., González- Rodríguez M.V., Determination of antioxidant migration level from lowdensity polyethylene films into food simulants, J. Chromatogr. A, 2003, 1018, 53-62. 10.1016/j.chroma.2003.08.025Search in Google Scholar PubMed

[28] Litescu S.C., Sandra A.V., Eremia S.A.V., Diaconu M., Tache A., Radu G.L., Biosensors applications on assessment of reactive oxygen species and antioxidants, chapter 5, in Environmental biosensors, Edited by Vernon Somerset, In Tech Rijeka Croatia, 2011. Search in Google Scholar

[29] Lino F.M.A., de Sá L.Z., Torres I.M.S., Rocha M.L., Dinis T.C.P., Ghedini P.C., Somerset V.S., Gil E.S., Voltammetric and spectrometric determination of antioxidant capacity of selected wines, Electrochim. Acta, 2014, 128, 25-31. 10.1016/j.electacta.2013.08.109Search in Google Scholar

[30] Pellegrini N., Serafini S., Del Rio S.D., Bianchi M., Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays, Mol. Nutr. Food.Res., 2006, 50, 1030–1038. 10.1002/mnfr.200600067Search in Google Scholar PubMed

[31] Hu F.B., Plant-based foods and prevention of cardiovascular disease: an overview, Am. J. Clin. Nutr., 2003, 78, 544-551. 10.1093/ajcn/78.3.544SSearch in Google Scholar PubMed

[32] McCullough M.L., Robertson A.S., Chao A., Jacobs E.J., Stampfer M.J., Jacobs D.R., Diver W.R., Cale E.E., Thun M.J., A prospective study of whole grains, fruits, vegetables and colon cancer risk, Cancer Cause Control., 2003, 14, 959-970. 10.1023/B:CACO.0000007983.16045.a1Search in Google Scholar

[33] Houston M., Nutrition and nutraceutical supplements for the treatment of hypertension: Part I: Review Paper., J. Clin. Hypertens., 2013, 15, 752-757. 10.1111/jch.12188Search in Google Scholar PubMed PubMed Central

[34] Mello L.D., Kubota L.T., Biosensors as a tool for the antioxidant status evaluation, Talanta, 2007, 72, 335–348. 10.1016/j.talanta.2006.11.041Search in Google Scholar PubMed

[35] MacDonald-Wicks L.K., Wood L.G., Garg M.L., Methodology for the determination of biological antioxidant capacity in vitro: a review, J. Sci. Food Agric., 2006, 86, 2046–2056. 10.1002/jsfa.2603Search in Google Scholar

[36] Svork, L., Determination od caffeine: a comprehensive review on electrochemical methods, Int. J. Electrochem. Sci., 2013, 8, 5755-5773. Search in Google Scholar

[37] Pisoschi A.M., Negulescu Gh.P., Pisoschi A., Ascorbic acid determination by an amperometric ascorbate oxidase-based biosensor, Rev. Chim. (Bucharest), 2010, 61, 339-344. Search in Google Scholar

[38] Pisoschi A.M., Pop A., Negulescu Gh.P., Pisoschi A., Determination of ascorbic acid content of some fruit juices and wine by voltammetry performed at Pt and Carbon Paste Electrodes, Molecules, 2011, 16, 1349-1365. 10.3390/molecules16021349Search in Google Scholar PubMed PubMed Central

[39] de Lima A.A., Sussuchi E.M., de Giovani W.F., Electrochemical and antioxidant properties of anthocyanins and anthocyanidins, Croat. Chem. Acta, 2007, 80, 29-34. Search in Google Scholar

[40] Pisoschi A.M., Danet A.F., Kalinowski S., Ascorbic acid determination in commercial fruit juice samples by cyclic voltammetry, J. Autom. Methods Manag. Chem., Volume 2008, Article ID 937651, 8 pages, doi:10.1155/2008/937651. 10.1155/2008/937651Search in Google Scholar PubMed PubMed Central

[41] Arteaga J.F., Ruiz-Montoya M., Palma A., Alonso-Garrido G., Pintado S., Rodríguez-Mellado J.M., Comparison of the simple cyclic voltammetry (CV) and DPPH assays for the determination of antioxidant capacity of active principles, Molecules, 2012, 17, 5126-5138. 10.3390/molecules17055126Search in Google Scholar PubMed PubMed Central

[42] Kounaves S.P., Voltammetric techniques, Ch. 37, in F.A. Settle (Ed.) Handbook of instrumental techniques for analytical chemistry, Prentice Hall, Upper Saddle River, New Jersey, 1997. Search in Google Scholar

[43] Behfar A.A., Sadeghi N., Jannat B., Oveisi M.R., Determination of L- ascorbic acid in plasma by voltammetric method, Iran. J. Pharm. Res., 2010, 9, 123-128. Search in Google Scholar

[44] Wawrzyniak J., Ryniecki A., Zembrzuski W., Application of voltammetry to determine vitamin C in apple juices, Acta Sci. Pol. Technol. Aliment., 2005, 42, 5–16. Search in Google Scholar

[45] Kilmartin P.A., Zou H.L., Waterhouse A.L., A cyclic voltammetry method suitable to characterizing antioxidant properties of wine and wine phenolics, J. Agric. Food Chem., 2001, 49, 1957–1965. 10.1021/jf001044uSearch in Google Scholar PubMed

[46] Bortolomeazzi R., Sebastianutto N., Toniolo R., Pizzariello A., Comparative evaluation of the antioxidant capacity of smoke flavouring phenols by crocin bleaching inhibition, DPPH radical scavenging and oxidation potential, Food Chem., 2007, 100, 1481–1489. 10.1016/j.foodchem.2005.11.039Search in Google Scholar

[47] Samra M.A., Chedea V.S., Economou A., Calokerinos A., Kefalas P., Antioxidant/prooxidant properties of model phenolic compounds: part I. studies on equimolar mixtures by chemiluminescence and cyclic voltammetry, Food Chem., 2011, 125, 622–629. 10.1016/j.foodchem.2010.08.076Search in Google Scholar

[48] Yakovleva K.E., Kurzeev S.A., Stepanova E.V., Fedorova T.V., Kuznetsov B.A., Koroleva O.V., Characterization of plant phenolic compounds by cyclic voltammetry, Appl. Biochem. Microbiol., 2007, 43, 661–668. 10.1134/S0003683807060166Search in Google Scholar

[49] Chevion S., Roberts M.A., Chevion M., The use of cyclic voltammetry for the evaluation of antioxidant capacity, Free Rad. Biol. Med., 2000, 28, 860–870. 10.1016/S0891-5849(00)00178-7Search in Google Scholar

[50] Bott A.W., Practical problems in voltammetry 2. Electrode capacitance, Curr.Sep. 1993, 12, 10-13. Search in Google Scholar

[51] Marken F., Neudeck A., Bond A.M., Cyclic voltammetry, Ch II.1. in F. Scholz (Edts), Electroanalytical methods-guide to experiments and applications, Springer, 2009, p.62. 10.1007/978-3-642-02915-8_4Search in Google Scholar

[52] Kilmartin P.A., Zou H.L., Waterhouse A.L., Correlation of wine phenolic composition versus cyclic voltammetry response, Am. J. Enol. Viticult., 2002, 53, 294–302. Search in Google Scholar

[53] Chevion S., Chevion M., Boon Chock P., Beecher G.R., Antioxidant capacity of edible plants: Extraction protocol and direct evaluation by cyclic voltammetry, J. Med. Food, 1999, 2, 1–10. 10.1089/jmf.1999.2.1Search in Google Scholar

[54] Campanella L., Martini E., Rita G., Tomassetti M., Antioxidant capacity of dry vegetal extracts checked by voltammetric method, J. Food Agric. Environ., 2006, 4, 135-144. Search in Google Scholar

[55] Zielinska D., Szawara-Nowak D., Zielinski H., Comparison of spectrophotometric and electrochemical methods for the evaluation of the antioxidant capacity of buckwheat products after hydrothermal treatment, J. Agric. Food Chem., 2007, 55, 6124-6131. 10.1021/jf071046fSearch in Google Scholar

[56] Chevion S., Berry E.M., Kitrossky N., Kohen R., Evaluation of plasma low molecular weight antioxidant capacity by cyclic voltammetry, Proceedings of the International Meeting on Free Radicals in Health and Disease, Istanbul, 1995, abstract no. 300. Search in Google Scholar

[57] Chevion S., Berry E.M., Kitrossky N., Kohen R., Evaluation of plasma low molecular weight antioxidant capacity by cyclic voltammetry, Free Radic. Biol. Med., 1997, 22, 411–421. 10.1016/S0891-5849(96)00337-1Search in Google Scholar

[58] Chevion S., Hofmann M., Ziegler R., Chevion M., Nawroth P.P., The antioxidant properties of thioctic acid: characterization by cyclic voltammetry, Biochem. Mol. Biol. Int., 1997, 41, 317–327. 10.1080/15216549700201331Search in Google Scholar PubMed

[59] Chevion S., Chevion M., Antioxidant status and human health - use of cyclic voltammetry for the evaluation of the antioxidant capacity of plasma and of edible plants, Ann. N.Y. Acad. Sci., 2000, 899, 308-325. 10.1111/j.1749-6632.2000.tb06196.xSearch in Google Scholar PubMed

[60] Chevion S., Or R., Berry E.M., The antioxidant status of patients subjected to total body irradiation, Biochem. Mol. Biol. Int., 1999, 47, 1019–1027. 10.1080/15216549900202143Search in Google Scholar PubMed

[61] U.S. Department of Agriculture, Agricultural Research Service. 2013. USDA National Nutrient Database for Standard Reference, Release 26. Nutrient Data Laboratory Home Page, URL: http:// www.ars.usda.gov/ba/bhnrc/nd, accessed 15 oct. 2014. Search in Google Scholar

[62] Ruffien-Ciszak A., Gros P., Comtat M., Schmitt A-M., Questel E., Casas C., Redoules D., Exploration of the global antioxidant capacity of the stratum corneum by cyclic voltammetry, J. Pharm. Biomed. Anal., 2006, 40, 162–167. 10.1016/j.jpba.2005.05.035Search in Google Scholar PubMed

[63] Ziyatdinova G.K., Budnikov Ć.H.C., Pogorel’tzev Ć.V.I., Electrochemical determination of the total antioxidant capacity of human plasma, Anal. Bioanal. Chem., 2005, 381, 1546–1551. 10.1007/s00216-005-3132-5Search in Google Scholar PubMed

[64] Korotkova E.I., Karbainov Y.A., Shevchuk A.V., Study of antioxidant properties by voltammetry, J. Electroanal. Chem., 2002, 518, 56–60. 10.1016/S0022-0728(01)00664-7Search in Google Scholar

[65] Photinon K., Chalermchart Y., Khanongnuch C., Wang S-H., Liu Ch-Ch., A thick-film sensor as a novel device for determination of polyphenols and their antioxidant capacity in white wine, Sensors, 2010, 10, 1670-1678. 10.3390/s100301670Search in Google Scholar PubMed PubMed Central

[66] Roginsky V., de Beer D., Harbertson J.F., Kilmartin P.A., Barsukova T., Adams D.O., The antioxidant activity of Californian red wines does not correlate with wine age, J. Sci. Food Agric., 2006, 86, 834–840. 10.1002/jsfa.2422Search in Google Scholar

[67] Makhotkina O., Kilmartin P.A., The use of cyclic voltammetry for wine analysis: determination of polyphenols and free sulfur dioxide, Anal. Chim. Acta, 2010, 668, 155–165. 10.1016/j.aca.2010.03.064Search in Google Scholar PubMed

[68] Makhotkina O., Kilmartin P.A., Uncovering the influence of antioxidants on polyphenol oxidation in wines using an electrochemical method: cyclic voltammetry, J. Electroanal. Chem., 2009, 633, 165–174. 10.1016/j.jelechem.2009.05.007Search in Google Scholar

[69] Sousa W.R., da Rocha C., Cardoso C.L., Silva D.H.S., Zanoni M.V.B., Determination of the relative contribution of phenolic antioxidants in orange juice by voltammetric methods, J. Food Compos. Anal., 2004, 17, 619–633. 10.1016/j.jfca.2003.09.013Search in Google Scholar

[70] Simic A., Manojlovic D., Segan D., Todorovic M., Electrochemical behavior and antioxidant and prooxidant activity of natural phenolics, Molecules, 2007, 12, 2327-2340. 10.3390/12102327Search in Google Scholar PubMed PubMed Central

[71] Ahmed S., Tabassum S., Shakeel F., Khan A.Y., A facile electrochemical analysis to determine antioxidant activity of flavonoids against DPPH radical, J. Electrochem. Soc., 2012, 159, F103-F109. 10.1149/2.jes112300Search in Google Scholar

[72] Masek A., Zaborski M., Chrzescijanska E., Electrooxidation of flavonoids at platinum electrode studied by cyclic voltammetry, Food Chem., 2011, 127, 699–704. 10.1016/j.foodchem.2010.12.127Search in Google Scholar PubMed

[73] Piljac-Zegarac J., Valek L., Stipcevic T., Martinez S., Electrochemical determination of antioxidant capacity of fruit tea infusions, Food Chem., 2010, 121, 820–825. 10.1016/j.foodchem.2009.12.090Search in Google Scholar

[74] Waterhouse D.S., Bronwen G.S., O’Connor C.J., Melton L.D., Effect of raw and cooked onion dietary fibre on the antioxidant activity of ascorbic acid and quercetin, Food Chem., 2008, 111, 580–585. 10.1016/j.foodchem.2008.04.023Search in Google Scholar

[75] Masek A., Chrzescijanska E., Kosmalska A., Zaborski M., Antioxidant activity determination in Sencha and Gun powder green tea extracts with the application of voltammetry and UV-VIS spectrophotometry, C. R. Chim., 2012, 15, 424–427. 10.1016/j.crci.2012.01.005Search in Google Scholar

[76] Naumova G., Maksimova V., Mirceski V., Ruskovska T., Koleva G.L., Gulaboski R., Rapid estimation of antioxidant capacity of some medicinal plants: electrochemical and photometric approaches, in: 8th Conference on medicinal and aromatic plants of southeast european countries, 19-22 May 2014, Durres, Albania. URL: http://eprints.ugd.edu.mk/id/eprint/11079, accessed 07.11.2014 Search in Google Scholar

[77] Zielinska D., Wiczowski W., Piskula M.K., Determination of the relative contribution of quercetin and its glucosides to the antioxidant capacity of onion by cyclic voltammetry and spectrophotometric methods, J. Agric. Food Chem., 2008, 56, 3524–3531. 10.1021/jf073521fSearch in Google Scholar PubMed

[78] Kondo T., Sakai K., Watanabe T., Einaga Y., Yuasa M., Electrochemical detection of lipophilic antioxidants with high sensitivity at boron-doped diamond electrode, Electrochim. Acta, 2013, 95, 205-211. 10.1016/j.electacta.2013.02.052Search in Google Scholar

[79] Tyurin V.Yu., Meleshonkova N.N., Dolganov A.V., Glukhova A.P., Milaeva E.R., Electrochemical method in determination of antioxidative activity using ferrocene derivatives as examples, Russ. Chem. Bul., 2011, 60, 647-655. 10.1007/s11172-011-0100-4Search in Google Scholar

[80] Ziyatdinova G.K., Nizamova A.M., Budnikov H.C., Voltammetric determination of curcumin in spices, J. Anal. Chem., 2012, 67, 591–594. 10.1134/S1061934812040132Search in Google Scholar

[81] Apetrei C., Apetrei I.M., De Saja J.A., Rodriguez-Mendez M.L., Carbon paste electrodes made from different carbonaceous materials: Application in the study of antioxidants, Sensors, 2011, 11, 1328-1344. 10.3390/s110201328Search in Google Scholar PubMed PubMed Central

[82] de Beer D., Harbertson J.F., Kilmartin P.A., Roginsky V., Barsukova T., Adams D.O., Waterhouse A.L., Phenolics: a comparison of diverse analytical methods, Am. J. Enol. Vitic., 2004, 55, 389-399. Search in Google Scholar

[83] Blasco A.J., Crevillen A.G., Gonzalez M.C., Escarpa A., Direct electrochemical sensing and detection of natural antioxidants and antioxidant capacity in vitro systems, Electroanalysis, 2007, 19, 2275–2286. 10.1002/elan.200704004Search in Google Scholar

[84] Makhotkina O., Kilmartin P.A., The phenolic composition of Sauvignon blanc juice profiled by cyclic voltammetry, Electrochim. Acta, 2012, 83, 188–195. 10.1016/j.electacta.2012.07.101Search in Google Scholar

[85] Sochor J., Dobes J., Krystofova O., Ruttkay-Nedecky B., Babula P., Pohanka M., Jurikova T., Zitka O., Adam V., Klejdus B., Kizek R., Electrochemistry as a tool for studying antioxidant properties, Int. J. Electrochem. Sci., 2013, 8, 8464–8489. Search in Google Scholar

[86] Hynek D., Prasek J., Pikula J., Adam V., Hajkova P., Krejcova L., Trnkova L., Sochor J., Pohanka M., Hubalek J., Beklova M., Vrba R., Kizek R., Electrochemical analysis of lead toxicosis in vultures, Int. J. Electrochem. Sci., 2011, 6, 5980-6010. Search in Google Scholar

[87] Sochor J., Hynek D., Krejcova L., Fabrik I., Krizkova S., Gumulec J., Adam V., Babula P., Trnkova L., Stiborova M., Hubalek J., Masarik M., Binkova H., Eckschlager T., Kizek R., Study of metallothionein role in spinocellular carcinoma tissues of head and neck tumours using Brdicka Reaction, Int. J. Electrochem. Sci., 2012, 7, 2136-2152. Search in Google Scholar

[88] Aguirre M.J, Chen Yo.Y., Isaacs M., Matsuhiro B., Mendoza L., Torres S., Electrochemical behaviour and antioxidant capacity of anthocyanins from Chilean red wine, grape and raspberry, Food Chem., 2010, 121, 44–48. 10.1016/j.foodchem.2009.11.088Search in Google Scholar

[89] Blasco A.J., Gonzalez M.C., Escarpa A., Electrochemical approach for discriminating and measuring predominant flavonoids and phenolic acids using differential pulse voltammetry: towards an electrochemical index of natural antioxidants, Anal. Chim. Acta, 2004, 511, 71-81. 10.1016/j.aca.2004.01.038Search in Google Scholar

[90] Diculescu V.C., Vivan M., Brett A.M.O., Voltammetric behavior of antileukemia drug glivek. Part III: In situ DNA oxidative damage by the glivek electrochemical metabolite, Electroanalysis, 2006, 18, 1963-1970. 10.1002/elan.200603602Search in Google Scholar

[91] Seruga M., Novak I., Jakobek L., Determination of polyphenols content and antioxidant activity of some red wines by differential pulse voltammetry, HPLC and spectrophotometric methods, Food Chem., 2011, 124, 1208–1216. 10.1016/j.foodchem.2010.07.047Search in Google Scholar

[92] Janeiro P., Oliveira Brett A.M., Catechin electrochemical oxidation mechanisms, Anal. Chim. Acta, 2004, 518, 109–115. 10.1016/j.aca.2004.05.038Search in Google Scholar

[93] Souza L.P., Calegari F., Zarbin A.J.G., Marcolino-Júnior L.H., Bergamini M.F., Voltammetric determination of the antioxidant capacity in wine samples using a carbon nanotube modified electrode, J. Agric. Food Chem., 2011, 59, 7620−7625. 10.1021/jf2005589Search in Google Scholar PubMed

[94] Shpigun L.K., Arharova M.A., Brainina K.Z., Ivanova A.V., Flow injection potentiometric determination of total antioxidant activity of plant extracts, Anal. Chim. Acta, 2006, 573-574, 419–426. 10.1016/j.aca.2006.03.094Search in Google Scholar PubMed

[95] Yilmaz U.T., Kekillioglu A., Mert R., Determination of gallic acid by differential pulse polarography: application to fruit juices, J. Anal. Chem., 2013, 68, 1064-1069. 10.1134/S1061934813120113Search in Google Scholar

[96] Litescu S.C., Radu G.L., Estimation of the antioxidative properties of tocopherols – an electrochemical approach, Eur. Food Res. Technol., 2000, 211, 218-221. 10.1007/s002170050027Search in Google Scholar

[97] Shapoval G.S., Kruglyak O.S., Electrochemical modeling of antioxidants action and determination of their activity, Russ. J. Gen. Chem., 2011, 81, 1442–1448. 10.1134/S1070363211070073Search in Google Scholar

[98] Zhang G., Yang F., Gao M., Fang X., Liu L., Electro- Fenton degradation of azo dye using polypyrrole/ anthraquinonedisulphonate composite film modified graphite cathode in acidic aqueous solutions, Electrochim. Acta, 2008, 53, 5155-5161. 10.1016/j.electacta.2008.01.008Search in Google Scholar

[99] Dubinina E.E., Anti-oxidant system of blood plasma, Ukr. Biokhim. Zh., 1992, 64, 3-15. Search in Google Scholar

[100] May L.M., Qu Z., Morrow J.D., Mechanisms of ascorbic acid recycling in human erythrocytes, Biochim. Biophys. Acta, 2001, 1528, 159-166. 10.1016/S0304-4165(01)00188-XSearch in Google Scholar

[101] Wincler B.S., Unequivocal evidence in support of the nonenzymatic redox coupling between glutathione/glutathione disulfide and ascorbic acid/dehydroascorbic acid, Biochim. Biophys. Acta, 1992, 1117, 287-290. 10.1016/0304-4165(92)90026-QSearch in Google Scholar

[102] de-los-Santos-Alvarez N., de-los-Santos-Alvarez P., Lobo- Castanon M.J., Lopez R., Miranda-Ordieres A.J., Tunon-Blanco P., Electrochemical oxidation of guanosine and adenosine: two convergent pathways, Electrochem. Commun., 2007, 9, 1862– 1866. 10.1016/j.elecom.2007.04.018Search in Google Scholar

[103] Skeva, E., Girousi, S., A study of the antioxidative behavior of phenolic acids, in aqueous herb extract using a dsDNA biosensor, Cent. Eur. J. Chem., 2012, 10, 1280-1289. 10.2478/s11532-012-0051-0Search in Google Scholar

[104] Laborda E., Molina A., Li Q., Batchelor-McAuley C., Compton R.G., Square wave voltammetry at disc microelectrodes for characterization of two electron redox processes, Phys. Chem. Chem. Phys., 2012, 14, 8319-8327. 10.1039/c2cp40265cSearch in Google Scholar PubMed

[105] Viswanathan V., Hansen H.A., Rossmeisl J., Jaramillo T.F., Pitsch H., Norskov J.K., Simulating linear sweep voltammetry from firstprinciples: application to electrochemical oxidation of water on Pt(111) and Pt3Ni(111), J. Phys. Chem. C, 2012, 116, 4698-4704. 10.1021/jp210802qSearch in Google Scholar

[106] O’Connor J.J., Lowry J.P., A comparison of the effects of the dopamine partial agonists aripiprazole and (−)-3-PPP with quinpirole on stimulated dopamine release in the rat striatum: studies using fast cyclic voltammetry in vitro, Eur. J. Pharmacol., 2012, 686, 60-65. 10.1016/j.ejphar.2012.04.046Search in Google Scholar PubMed

[107] Boudreau P.A., Perone S.P., Quantitative resolution of overlapped peaks in programmed potential-step voltammetry, Anal. Chem., 1979, 51, 811-817. 10.1021/ac50043a009Search in Google Scholar

[108] Dogan-Topal B., Ozkan S.A., Uslu B., The analytical applications of square wave voltammetry on pharmaceutical analysis, TOCBMJ Open Chemical & Biomedical Methods Journal, 2010, 3, 56-73. 10.2174/1875038901003010056Search in Google Scholar

[109] Dobes J., Zitka O., Sochor J., Ruttkay-Nedecky B., Babula P., Beklova M., Kynicky J., Hubalek J., Klejdus B., Kizek R., Adam V., Electrochemical tools for determination of phenolic compounds in plants, a review, Int. J. Electrochem. Sci., 2013, 8, 4520– 4542. Search in Google Scholar

[110] Wang Y., Calas-Blanchard C., Cortina-Puig M., Baohong L., Marty J-L., An electrochemical method for sensitive determination of antioxidant capacity, Electroanalysis, 2009, 21, 1395 –1400. 10.1002/elan.200804537Search in Google Scholar

[111] Shay K.P., Moreau R.F., Smith E.J., Hagen T.M., Is a lipoic acid a scavenger of reactive oxigen species in vivo? Evidence for its initiation of stress signaling pathways that promote endogenous antioxidant capacity, IUMBM Life, 2008, 60, 362-367. 10.1002/iub.40Search in Google Scholar PubMed

[112] dos Santos Raymundo M., da Silva Paula, M.M., Franco C., Fett R., Quantitative determination of the phenolic antioxidants using voltammetric techniques, LWT Food Sci. Technol., 2007, 40, 1133–1139. 10.1016/j.lwt.2006.07.001Search in Google Scholar

[113] Tougas T.P., Jannetti J.M., Collier W.G., Theoretical and experimental response of biamperometric detector for flow injection analysis, Anal. Chem., 1985, 57, 1377-1381. 10.1021/ac00284a044Search in Google Scholar

[114] Milardovic S., Ivekovic D., Rumenjak V., Grabaric B.S., Use of DPPH• / DPPH redox couple for biamperometric determination of antioxidant activity, Electroanalysis, 2005, 17, 1847-1853. 10.1002/elan.200503312Search in Google Scholar

[115] Milardovic S., Kerekovic I., Derrico R., Rumenjak V., A novel method for flow injection analysis of total antioxidant capacity using enzymatically produced ABTS•+ and biamperometric detector containing interdigitated electrode, Talanta, 2007, 71, 213–220. 10.1016/j.talanta.2006.03.042Search in Google Scholar PubMed

[116] Milardovic S., Kerekovic I., Rumenjak V., A flow injection biamperometric method for determination of total antioxidant capacity of alcoholic beverages using bienzymatically produced ABTS∙+, Food Chem., 2007, 105, 1688-1694. 10.1016/j.foodchem.2007.04.056Search in Google Scholar

[117] Magalhaes L.M., Santos M., Segundo M.A., Reis S., Lima J.L.F.C., Flow injection based methods for fast screening of antioxidant capacity, Talanta, 2009, 77, 1559-66. 10.1016/j.talanta.2008.10.034Search in Google Scholar PubMed

[118] de Queiroz Ferreira R., Avaca L.A., Electrochemical determination of the antioxidant capacity: the ceric reducing/antioxidant capacity (CRAC) assay, Electroanalysis, 2008, 20, 1323–1329. 10.1002/elan.200704182Search in Google Scholar

[119] Scheller F., Schubert F., Biosensors, Elsevier, Amsterdam, 1992. 10.17660/ActaHortic.1992.304.7Search in Google Scholar

[120] Blum L., Coulet P. (Eds), Biosensor principles and application, Marcel Dekker Inc., New York, 1991. Search in Google Scholar

[121] Dzyadevych S.V., Arkhypova V.N., Soldatkin A.P., Elskaya A.V., Martelet C., Jaffrezic-Renault N., Amperometric enzyme biosensors: past, present and future, ITBM-RBM, 2008, 29, 171–180. 10.1016/j.rbmret.2007.11.007Search in Google Scholar

[122] Chen J., Lindmark-Mansson H., Gorton L., Åkesson B., Antioxidant capacity of bovine milk as assayed by spectrophotometric and amperometric methods, Int. Dairy J., 2003, 13, 927–935. 10.1016/S0958-6946(03)00139-0Search in Google Scholar

[123] Lates V., Marty J.-L., Popescu I.C., Determination of antioxidant capacity by using xanthine oxidase bioreactor coupled with flow-through H2O2 amperometric biosensor, Electroanalysis, 2011, 23, 728–736. 10.1002/elan.201000544Search in Google Scholar

[124] Cortina-Puig M., Scangas A.C.H., Marchese Z.S., Andreescu S., Marty J.-L., Calas-Blanchard C., Development of a xanthine oxidase modified amperometric electrode for the determination of the antioxidant capacity, Electroanalysis, 2010, 22, 2429– 2433. 10.1002/elan.201000248Search in Google Scholar

[125] Campanella L., Bonanni A., Favero G., Tomassetti M., Determination of antioxidant properties of aromatic herbs, olives and fresh fruit using an enzymatic sensor, Anal. Bioanal. Chem., 2003, 375, 1011–1016. 10.1007/s00216-003-1825-1Search in Google Scholar

[126] Campanella L., Gatta T., Gregori E., Tomassetti M., Determination of antioxidant capacity of papaya fruit and papaya-based food and drug integrators, using a biosensor device and other analytical methods, Monatsh. Chem., 2009, 140, 965–972. 10.1007/s00706-008-0069-3Search in Google Scholar

[127] Fatima Barroso M., de-los-Santos-Álvarez N., Delerue-Matos C., Oliveira M.B.P.P., Towards a reliable technology for antioxidant capacity and oxidative damage evaluation: electrochemical (bio)sensors, Biosens. Bioelectron., 2011, 30, 1–12. 10.1016/j.bios.2011.08.036Search in Google Scholar

[128] Cortina-Puig M., Prieto-Simón B., Campas, M., Calas-Blanchard C., Marty J.-L., Determination of the antioxidants’ ability to scavenge free radicals using biosensors, in Bio-farms for nutraceuticals: functional food and safety control by biosensors, Ch. 16, edited by M. T. Giardi, G. Rea and B. Berra, Springer Science+Business Media LLC, Landes Bioscience, New York, 2010. 10.1007/978-1-4419-7347-4_16Search in Google Scholar

[129] Tammeveski K., Tenno T.T., Mashirin A.A., Hillhouse E.W., Manning P., Mc Neil C.J., Superoxide electrode based on covalently immobilized cytochrome c: modelling studies, Free Radical Biol. Med., 1998, 25, 973-978. 10.1016/S0891-5849(98)00182-8Search in Google Scholar

[130] Ignatov S., Shishniashvili D., Ge B., Scheller F.W., Lisdat F., Amperometric biosensor based on a functionalized gold electrode for the detection of antioxidants, Biosens. Bioelectron., 2002, 17, 191-199. 10.1016/S0956-5663(01)00283-4Search in Google Scholar

[131] Ge B., Lisdat F., Superoxide sensor based on cytochrome c immobilized on mixed-thiol SAM with a new calibration method, Anal. Chim. Acta, 2002, 454, 53-64. 10.1016/S0003-2670(01)01545-8Search in Google Scholar

[132] Cortina-Puig M., Munoz-Berbel X., Rouillon R., Calas-Blanchard C., Marty J.-L., Development of a cytochrome c-based screenprinted biosensor for the determination of the antioxidant capacity of orange juices, Bioelectrochemistry, 2009, 76, 76-80. 10.1016/j.bioelechem.2009.04.004Search in Google Scholar

[133] Cortina-Puig M., Munoz-Berbel X., Calas-Blanchard C., Marty J.-L., Electrochemical characterization of a superoxide biosensor based on the co-immobilization of cytochrome c and XOD on SAM-modified gold electrodes and application to garlic samples, Talanta, 2009, 79, 289–294. 10.1016/j.talanta.2009.03.046Search in Google Scholar

[134] Granero A.M., Fernández H., Agostini E., Zón M.A., An amperometric biosensor based on peroxidases from Brassica napus for the determination of the total polyphenolic content in wine and tea samples, Talanta, 2010, 83, 249–255. 10.1016/j.talanta.2010.09.016Search in Google Scholar

[135] Kulys J., Bilitewski U., Schmid R.D., The kinetics of simultaneous conversion of hydrogen peroxide and aromatic compounds at peroxidase electrodes, Bioelectrochem. Bioenerg., 1991, 26, 277-286. 10.1016/0302-4598(91)80029-3Search in Google Scholar

[136] Marko-Varga G., Emneus J., Gorton, L., Ruzgas T., Developement of enzyme-based amperometric sensors for the determination of phenolic compounds, TRAC-Trend. Anal. Chem., 1995, 14, 319-328. 10.1016/0165-9936(95)97059-ASearch in Google Scholar

[137] Jakubec P., Bancirova M., Halouzka V., Lojek, A., Ciz M., Denev P., Cibicek N., Vacek J., Vostalova J., Ulrichova J., Hrbac J., Electrochemical sensing of total antioxidant capacity and polyphenol content in wine samples using amperometry online - coupled with microdialysis, J. Agric. Food Chem., 2012, 60, 7836−7843. 10.1021/jf3019886Search in Google Scholar PubMed

[138] Arribas A.S., Martínez-Fernández M., Moreno M., Bermejo E., Zapardiel A., Chicharro M., Analysis of total polyphenols in wines by FIA with highly stable amperometric detection using carbon nanotube-modified electrodes, Food Chem., 2013, 136, 1183–1192. 10.1016/j.foodchem.2012.09.027Search in Google Scholar PubMed

[139] Rodríguez Cid de León G.I., Gómez Hernández M., Domínguez y Ramírez A.M., Medina López J.R., Alarcón Ángeles G., Morales Pérez A., Adaptation of DPPH method for antioxidant determination, ECS Transactions, 2011, 36, 401-411. 10.1149/1.3660634Search in Google Scholar

[140] Bard A.J., Faulkner L.R., Electrochemical methods. Fundamentals and applications, 2nd edition., Wiley & Sons Inc., New York, Chicester, Weinheim, 2001. Search in Google Scholar

[141] Andrei V., Bunea A.I., Tudorache A., Gaspar S., Vasilescu A., Simple DPPH∙-based electrochemical assay for the evaluation of the antioxidant capacity: a thorough comparison with spectrophotometric assays and evaluation with real-world samples, Electroanalysis, 2014, 26, 2677-2685. 10.1002/elan.201400376Search in Google Scholar

[142] Lapidot T., Harel S., Akiri B., Granit R., Kanner J., pH-dependent forms of red wine anthocyanins as antioxidants, J. Agric. Food Chem., 1999, 47, 67–70. 10.1021/jf980704gSearch in Google Scholar PubMed

[143] Noipa T., Srijaranai S., Tuntulani T., Ngeontae W., New approach for evaluation of the antioxidant capacity based on scavenging DPPH free radical in micelle systems, Food Res. Int. 2011, 44, 798–806. Search in Google Scholar

[144] Pisoschi A.M., Danet A.F., Construction and determination of the analytical characteristics of a potentiometric glucose biosensor, Rev. Chim. (Bucharest), 2004, 55, 843-850. Search in Google Scholar

[145] Tessutti L.S., Macedo D.V., Kubota L.T., Alves A.A., Measuring the antioxidant capacity of blood plasma using potentiometry, Anal. Biochem., 2013, 441, 109–114. 10.1016/j.ab.2013.07.012Search in Google Scholar

[146] Bratovcic A., Odobasic A., Catic S., The advantages of the use of ion-selective potentiometry in relation to UV/VIS spectroscopy, Agric. Conspec. Sci., 2009, 74, 139-142. Search in Google Scholar

[147] Goyal R.N., Brajter-Toth A., Dryhurst G., Further insights into the electrochemical oxidation of uric acid, J. Electroanal. Chem. Iterfacial Electrochem., 1982, 131, 181-202. 10.1016/0022-0728(82)87070-8Search in Google Scholar

[148] Brainina Kh.Z., Gerasimova E.L., Varzakova D.P., Balezin S.L., Portnov I.G., Makutina V.A., Tyrchaninova E.V., Potentiometric method for evaluating the oxidant/antioxidant activity of seminal and follicular fluids and clinical significance of this parameter for human reproductive function, TOCBMJ, Open Chemical & Biomedical Methods Journal, 2012, 5, 1-7. 10.2174/1875038901205010001Search in Google Scholar

[149] Brainina Kh.Z., Galperin L.G., Gerasimova E.L., Khodos M.Ya., Noninvasive potentiometric method of determination of skin oxidant/antioxidant activity, IEEE Sensors J., 2012, 12, 527-532. 10.1109/JSEN.2010.2100040Search in Google Scholar

[150] Brainina Kh.Z., Gerasimova E.L., Kasaikina O.T., Ivanova A.V., Antioxidant activity evaluation assay based on peroxide radicals generation and potentiometric measurement, Anal. Lett., 2011, 44, 1405-1415. 10.1080/00032719.2010.512687Search in Google Scholar

[151] Lugonja N.M., Stankovic D.M., Spasic S.D., Roglic G.M., Manoilovic D.D., Vrvic M.M., Comparative electrochemical determination of total antioxidant activity in infant formula with breast milk, Food Anal. Method., 2014, 7, 337-344. 10.1007/s12161-013-9631-7Search in Google Scholar

[152] Harvey D., Modern Analytical Chemistry, McGraw-Hill, New York, 1999. Search in Google Scholar

[153] Ziyatdinova G.K., Voloshin A.V., Gilmutdinov A.Kh., Budnikov H.C., Ganeev T.S., Application of constant-current coulometry for estimation of plasma total antioxidant capacity and its relationship with transition metal contents, J. Pharm. Biomed. Anal., 2006, 40, 958–963. 10.1016/j.jpba.2005.08.017Search in Google Scholar PubMed

[154] Ziyatdinova G.K., Budnikov H.C., Pogoreltzev V.I., Ganeev T.S., The application of coulometry for total antioxidant capacity determination of human blood, Talanta, 2006, 68, 800–805. 10.1016/j.talanta.2005.06.010Search in Google Scholar PubMed

[155] Alonso Á.M., Guillén D.A., Barroso C.G., Development of an electrochemical method for the determination of antioxidant activity. Application to grape-derived products, Eur. Food Res. Technol., 2003, 216, 445–448. 10.1007/s00217-003-0671-xSearch in Google Scholar

[156] Zielińska D., Wiczkowski W., Piskuła M.K., Evaluation of photochemiluminiscent, spectrophotometric and cyclic voltammetry methods for the measurement of the antioxidant capacity: the case of roots separated from buckwheat sprouts, Pol. J. Food Nutr. Sci., 2008, 58, 65-72. Search in Google Scholar

[157] Cuartero M., Ortuño J.A., Truchado P., García M.S., Tomás- Barberán F.A., Albero M.I., Voltammetric behaviour and squarewave voltammetric determination of the potent antioxidant and anticarcinogenic agent ellagic acid in foodstuffs, Food Chem., 2011, 128, 549–554. 10.1016/j.foodchem.2011.03.064Search in Google Scholar PubMed

[158] Chen J., Gorton L., Åkesson B., Electrochemical studies on antioxidants in bovine milk, Anal. Chim. Acta, 2002, 474, 137–146. 10.1016/S0003-2670(02)01004-8Search in Google Scholar

[159] Ceto X., Cespedes F., Pividori M.I., Gutierrez J.M., del Valle M., Resolution of phenolic antioxidant mixtures employing a voltammetric bio-electronic tongue, Analyst, 2012, 137, 349-356. 10.1039/C1AN15456GSearch in Google Scholar

[160] Korotkova E.I., Freinbichler W., Linert W., Dorozhko E.V., Bukkel M.V., Plotnikov E.V., Voronova O.A., Study of total antioxidant activity of human serum blood in the pathology of alcoholism, Molecules, 2013, 18, 1811-1818. 10.3390/molecules18021811Search in Google Scholar PubMed PubMed Central

[161] Teixeira J.G., Barrocas Dias C., Teixeira M.D., Electrochemical characterization and quantification of the strong antioxidant and antitumor agent pomiferin, Electroanalysis, 2009, 21, 2345 – 2353. 10.1002/elan.200900178Search in Google Scholar

[162] Kahl M., Golden T.D., Electrochemical determination of phenolic acids at a Zn/Al layered double hydroxide film modified glassy carbon electrode, Electroanalysis, 2014, 26, 1664-1670. 10.1002/elan.201400156Search in Google Scholar

[163] Wang Z., Yang F., Zeng H., Qin X.J., Luo J.J., Li Y., Xiao D., Voltammetric determination of TBHQ at a glassy carbon electrode surface activated by in situ chemical oxidation, Analyst, 2014, 139, 3622-3628. 10.1039/C4AN00325JSearch in Google Scholar PubMed

[164] Fatima Barroso M., Delerue-Matos C., Oliveira M.B.P.P., Electrochemical evaluation of total antioxidant capacity of beverages using a purine-biosensor, Food Chem., 2012, 132, 1055–1062. 10.1016/j.foodchem.2011.10.072Search in Google Scholar

[165] Kamel A.H., Moreira F.T.C., Delerue-Matos C., Sales M.G.F., Electrochemical determination of antioxidant capacities in flavored waters by guanine and adenine biosensors, Biosens. Bioelectron., 2008, 24, 591–599. 10.1016/j.bios.2008.06.007Search in Google Scholar PubMed

[166] Kracmarova A., Pohanka M., Electrochemical determination of low-molecular-weight antioxidants in blood serum, Chem. Listy, 2014, 108, 64-69. Search in Google Scholar

[167] Silva T.R., Westphal E., Gallardo H., Vieira I.C., Ionic organic film sensor for determination of phenolic compounds, Electroanalysis, 2014, 26, 1801-1809. 10.1002/elan.201400197Search in Google Scholar

[168] Amatatongchai M., Laosing S., Chailapakul O., Nacapricha D., Simple flow injection for screening of total antioxidant capacity by amperometric detection of DPPH radical on carbon nanotube modified-glassy carbon electrode, Talanta, 2012, 97, 267–272. 10.1016/j.talanta.2012.04.029Search in Google Scholar PubMed

[169] Campanella L., Bonanni A., Bellantoni D., Tomassetti M., Biosensors for determination of total antioxidant capacity of phytotherapeutic integrators: comparison with other spectrophotometric, fluorimetric and voltammetric methods, J. Pharmaceut. Biomed., 2004, 35, 303–320. 10.1016/S0731-7085(03)00627-7Search in Google Scholar

[170] Castaignède V., Durliat H., Comtat M., Amperometric and potentiometric determination of catechin as model of polyphenols in wines, Anal. Lett., 2003, 36, 1707-1720. 10.1081/AL-120023610Search in Google Scholar

[171] Zhang D., Chu L., Liu Y., Wang A., Ji B., Wu W., Zhou F., Wei Y., Cheng Q., Cai S., Xie L., Jia G., Analysis of the antioxidant capacities of flavonoids under different spectrophotometric assays using cyclic voltammetry and density functional theory, J. Agric. Food Chem., 2011, 59, 10277–10285. 10.1021/jf201773qSearch in Google Scholar PubMed

[172] Keyrouz R., Abasq M.L., Le Bourvellec C., Blanc N., Audibert L., Gall E., Hauchard D., Total phenolic contents, radical scavenging and cyclic voltammetry of seaweeds from Brittany, Food Chem., 2011, 126, 831–836. 10.1016/j.foodchem.2010.10.061Search in Google Scholar

[173] Pekal A., Drozdz P., Biesaga M., Pyrzynska K., Polyphenolic content and comparative antioxidant capacity of flavoured black teas, Int. J. Food Sci. Nutr., 2012, 63, 742–748. 10.3109/09637486.2011.653552Search in Google Scholar PubMed

[174] Ziyatdinova G.K., Budnikov H.C., Evaluation of the antioxidant properties of spices by cyclic voltammetry, J. Anal. Chem., 2014, 69, 990-997. 10.1134/S1061934814100189Search in Google Scholar

[175] Firuzi O., Lacanna A., Petrucci R., Marrosu G., Saso L., Evaluation of the antioxidant activity of flavonoids by ferric reducing antioxidant power assay and cyclic voltammetry, Biochim. Biophys. Acta, 2005, 1721, 174– 184. 10.1016/j.bbagen.2004.11.001Search in Google Scholar PubMed

[176] Amidi S., Mojab F., Moghaddam A.B., Tabib K., Kobarfard F., A simple electrochemical method for the rapid estimation of antioxidant potentials of some selected medicinal plants, Iran. J. Pharm. Res., 2012, 11, 117-121. Search in Google Scholar

[177] Campanella L., Martini E., Tomassetti M., Antioxidant capacity of the algae using a biosensor method, Talanta, 2005, 66, 902–911. 10.1016/j.talanta.2004.12.052Search in Google Scholar PubMed

[178] Malagutti A.R., Zuin V.G., Cavalheiro E.T.G., Mazo L.H., Determination of rutin in green tea infusions using squarewave voltammetry with a rigid carbon-polyurethane composite electrode, Electroanalysis, 2006, 18, 1028-1034. 10.1002/elan.200603496Search in Google Scholar

[179] Novak I., Seruga M., Komorsky-Lovric S., Electrochemical characterization of epigallocatechin gallate using square-wave voltammetry, Electroanalysis, 2009, 21, 1019-1025. 10.1002/elan.200804509Search in Google Scholar

[180] Komorsky-Lovric S., Novak I., Determination of ellagic acid in strawberries, raspberries and blackberries by square-wave voltammetry, Int. J. Electrochem. Sci., 2011, 6, 4638-4647. Search in Google Scholar

[181] Liu J., Su B., Lagger G., Tacchini P., Girault H.H., Antioxidant redox sensors based on DNA modified carbon screen-printed electrodes, Anal. Chem., 2006, 78, 6879-6884. 10.1021/ac0608624Search in Google Scholar PubMed

[182] Adam V., Mikelova R., Hubalek J., Hanustiak P., Beklova M., Hodek P., Horna A., Trnkova L., Stiborova M., Zeman L., Kizek R., Utilizing of square wave voltammetry to detect flavonoids in the presence of human urine, Sensors, 2007, 7, 2402-2418. 10.3390/s7102402Search in Google Scholar PubMed PubMed Central

[183] Bordonaba J.G., Terry L.A., Electrochemical behaviour of polyphenol rich fruit juices using disposable screen-printed carbon electrodes: Towards a rapid sensor for antioxidant capacity and individual antioxidants, Talanta, 2012, 90, 38– 45. 10.1016/j.talanta.2011.12.058Search in Google Scholar PubMed

[184] Robledo S.N., Tesio A.Y., Ceballos C.D., Zon M.A., Fernandez H., Electrochemical ultra-micro sensors for the determination of syntetic and natural antioxidants in edible vegetable oils, Sensor. Actuat. B-Chem., 2014, 192, 467-473. 10.1016/j.snb.2013.11.023Search in Google Scholar

[185] Porfirio D.A., de Queiroz Ferreira R., Malagutti A.R., Agostini Valle M.A., Electrochemical study of the increased antioxidant capacity of flavonoids through complexation with iron(II) ions, Electrochim. Acta, 2014, 141, 33–38. 10.1016/j.electacta.2014.07.046Search in Google Scholar

[186] Rodriguez-Sevilla E., Ramirez-Silva, M.T., Romero-Romo M., Ibarra-Escutia P., Palomar-Pardave M., Electrochemical quantification of the antioxidant capacity of medicinal plants using biosensors, Sensors, 2014, 14, 14423-14439. 10.3390/s140814423Search in Google Scholar PubMed PubMed Central

[187] Potkonjaka N.I., Veselinovic D.S., Novacovic M.M., Gorjanovic S.Z., Pezo L.L., Suznjevic D.Z., Antioxidant activity of propolis extract from Serbia: a polarographic approach, Food Chem. Toxicol., 2012, 50, 3614-3618. 10.1016/j.fct.2012.07.029Search in Google Scholar PubMed

[188] Gorjanovic S.Z., Alvarez-Suarez J.M., Novakovic M.M., Pastor F.T., Pezoa L., Battino M., Suznjevic D.Z., Comparative analysis of antioxidant activity of honey of different floral sources using recently developed polarographic and various spectrophotometric assays, J. Food Compos. Anal., 2013, 30, 13–18. 10.1016/j.jfca.2012.12.004Search in Google Scholar

Received: 2014-11-16
Accepted: 2015-2-2
Published Online: 2015-4-7

© 2015 Aurelia Magdalena Pisoschi et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1515/chem-2015-0099/html
Scroll to top button