Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 27, 2015

Determination of micelle aggregation numbers of alkyltrimethylammonium bromide and sodium dodecyl sulfate surfactants using time-resolved fluorescence quenching

  • Martin Pisárčik , Ferdinand Devínsky and Matúš Pupák
From the journal Open Chemistry

Abstract

The time-resolved fluorescence quenching method was applied to determine the micelle aggregation number of cationic single-chain surfactants dodecyltrimethylammonium bromide (DTAB), cetyltrimethylammonium bromide (CTAB) and anionic surfactant sodium dodecyl sulfate (SDS). The concentration dependence of micelle aggregation number was found to be linear for all investigated surfactants in the concentration range 2‒15 × the value of critical micelle concentration of the respective surfactant. The values of micelle aggregation number were found in the range 30‒77. Different trends in the linear concentration dependence of micelle aggregation number were observed for cationic surfactants and for the anionic surfactant SDS. A small slope value was found for cationic surfactants, while the SDS micelle aggregation number concentration dependence showed significantly a larger slope value. The aggregation number increase with the increasing SDS concentration results in the micellar growth. Results from a simple analysis based on computer models of cationic and anionic surfactant molecules with dodecyl chains supports, the formation of intramicellar hydrogen bonding between surfactant molecules in SDS micelle shell.

Graphical Abstract

References

[1] Floriano M.A., Caponetti E., Panagiotopoulos A., Micellization in Model Surfactant Systems, Langmuir, 1999, 15, 3143-3151. 10.1021/la9810206Search in Google Scholar

[2] Rodriguez-Guadarrama L.A., Talsania S.K., Mohanty K.K., Rajagopalan R., Thermodynamics of Aggregation of Amphiphiles in Solution from Lattice Monte Carlo Simulations, Langmuir, 1999, 15, 437-446. 10.1021/la9806597Search in Google Scholar

[3] Watanabe K., Ferrario M., Klein M, Molecular dynamics study of a sodium octanoate micelle in aqueous solution, J. Phys. Chem., 1988, 92, 819-821. 10.1021/j100314a045Search in Google Scholar

[4] Shelley J., Shelley M., Computer simulation of surfactant solutions, Curr. Opin. Colloid Interface Sci., 2000, 5, 101-110. 10.1016/S1359-0294(00)00042-XSearch in Google Scholar

[5] Jonsson B., Edholm O., Teleman O., Molecular dynamics simulations of a sodium octanoate micelle in aqueous solution, J. Chem. Phys., 1986, 85, 2259-2271. 10.1063/1.451122Search in Google Scholar

[6] Törnblom M., Henriksson U., Ginley M., A Field Dependent 2H Nuclear Magnetic Relaxation Study of the Aggregation Behavior in Micellar Solutions of CTAB and SDS, J. Phys. Chem., 1994, 98, 7041-7051. 10.1021/j100079a025Search in Google Scholar

[7] Gharibi H., Sohrabi B., Javadian S., Hashemianzadeh M., Study of the electrostatic and steric contributions to the free energy of ionic/nonionic mixed micellization, Colloids Surf. A, 2004, 244, 187-196. 10.1016/j.colsurfa.2004.06.007Search in Google Scholar

[8] Griffiths P.C., Paul A., Heenan R.K., Penfold J., Ranganathan R., Bales B.L., Role of Counterion Concentration in Determining Micelle Aggregation: Evaluation of the Combination of Constraints from Small-Angle Neutron Scattering, Electron Paramagnetic Resonance, and Time-Resolved Fluorescence Quenching, J. Phys. Chem. B, 2004, 108, 3810-3816. 10.1021/jp0371478Search in Google Scholar

[9] Peyre V., Bouguerra S., Testard F., Micellization of dodecyltrimethylammonium bromide in water-dimethylsulfoxide mixtures: A multi-lenght scale approach in model system, J. Colloid Interface Sci., 2013, 389, 164-174. 10.1016/j.jcis.2012.08.014Search in Google Scholar PubMed

[10] Joshi J.V., Aswal V.K., Goyal P.S., Small angle neutron scattering study of mixed micelles of oppositely charged surfactants. J. Phys., 2008, 71, 1039-1043. 10.1007/s12043-008-0220-zSearch in Google Scholar

[11] Reiss-Husson F., Luzzati V., The Structure of the Micellar Solutions of Some Amphiphilic Compounds in Pure Water as Determined by Absolute Small-Angle X-Ray Scattering Techniques, J. Phys. Chem., 1964, 68, 3504-3511. 10.1021/j100794a011Search in Google Scholar

[12] Lebedeva N., Zana R., Bales B.L., A Reinterpretation of the Hydration of Micelles of Dodecyltrimethylammonium Bromide and Chloride in Aqueous Solution, J. Phys. Chem. B, 2006, 110, 9800-9801. 10.1021/jp060516qSearch in Google Scholar

[13] Bales B.L., Zana R., Characterization of Micelles of Quaternary Ammonium Surfactants as Reaction Media I: Dodeclytrimethylammonium Bromide and Chloride, J. Phys. Chem. B, 2002, 106, 1926-1939. 10.1021/jp013813ySearch in Google Scholar

[14] Bales B.L., A Definition of the Degree of Ionization of a Micelle Based on Its Aggregation Number, J. Phys. Chem. B, 2001, 105, 6798-6804. 10.1021/jp004576mSearch in Google Scholar

[15] Bales B.L., Messina L., Vidal A., Peric M., Nascimento O.R., Precision Relative Aggregation Number Determinations of SDS Micelles Using a Spin Probe. A Model of Micelle Surface Hydration, J. Phys. Chem. B, 1998, 102, 10347-10358. 10.1021/jp983364aSearch in Google Scholar

[16] Lebedeva N., Ranganathan R., Bales B.L., Location of Spectroscopic Probes in Self-Aggregating Assemblies. II. The Location of Pyrene and Other Probes in Sodium Dodecyl Sulfate Micelles, J. Phys. Chem. B, 2007, 111, 5781-5793. 10.1021/jp070540jSearch in Google Scholar

[17] Imae T., Kamiya R., Ikeda S., Formation of spherical and rod-like micelles of cetyltrimethylammonium bromide in aqueous NaBr solutions, J. Colloid Interface Sci., 1985, 108, 215-225. 10.1016/0021-9797(85)90253-XSearch in Google Scholar

[18] Ozeki S., Ikeda S., The sphere-rod transition of micelles of dodecyldimethylammonium bromide in aqueous NaBr solutions, and the effects of counterion binding on the micelle size, shape and structure, Colloid Polym. Sci., 1984, 262, 409- 417. 10.1007/BF01410261Search in Google Scholar

[19] Ikeda S., Ozeki S., Tsunoda M.A., Micelle molecular weight of dodecyldimethylammonium chloride in aqueous solutions, and the transition of micelle shape in concentrated NaCl solutions, J. Colloid Interface Sci., 1980, 73, 27-37. 10.1016/0021-9797(80)90117-4Search in Google Scholar

[20] Fujio K., Ikeda S., Size of spherical micelles of dodecylpyridinium bromide in aqueous NaBr solutions, Langmuir, 1991, 7, 2899- 2903. 10.1021/la00060a006Search in Google Scholar

[21] Imae T., Ikeda S., Sphere-rod transition of micelles of tetradecyltrimethylammonium halides in aqueous sodium halide solutions and flexibility and entanglement of long rodlike micelles, J. Phys. Chem., 1986, 90, 5216-5223. 10.1021/j100412a065Search in Google Scholar

[22] Hayashi S., Ikeda S., Micelle size and shape of sodium dodecyl sulfate in concentrated sodium chloride solutions, J. Phys. Chem., 1980, 84, 744-751. 10.1021/j100444a011Search in Google Scholar

[23] Ikeda S., Hayashi S., Imae T., Rodlike micelles of sodium dodecyl sulfate in concentrated sodium halide solutions, J. Phys. Chem., 1981, 85, 106-112. 10.1021/j150601a024Search in Google Scholar

[24] Cabane B., Small Angle Scattering Methods, In: Zana R. Ed., Surfactant Solutions, Dekker, New York, 1987. Search in Google Scholar

[25] Yun F., Xue-Feng L., Young-Mei X., Yang Y., Kun C., Jung-Mok S., et al., Determination of Critical Micellar Aggregation Numbers by Steady state Fluorescence Probe Method, Acta Phys.-Chim. Sin., 2001, 17, 828-831, (in Chinese). 10.3866/PKU.WHXB20010914Search in Google Scholar

[26] Gracia K., Turner D., Palepu R., Thermodynamic properties of micellization of sodium dodecyl sulfate in binary mixtures of ethylene glycol with water, Can. J. Chem., 1996, 74, 1616-1625. 10.1139/v96-179Search in Google Scholar

[27] Jing-Yuan C., Guo-Ting W., Jin-Zhu L., Investigation on the determination of micellar aggregation number by steady-state fluorescence quenching method, Acta Phys.-Chim. Sin., 1993, 9, 461-465. (In Chinese). 10.3866/PKU.WHXB19930408Search in Google Scholar

[28] Zana R., Luminiscence Probing Methods, In: Zana R. Ed., Surfactant Solutions, Dekker, New York, 1987. Search in Google Scholar

[29] Turro N.J., Yekta A., Luminiscent Probes for Detergent Solutions: A Simple Procedure for Determination of the Mean Aggregation Number of Micelles, J. Am. Chem. Soc., 1978, 100, 5951-5952. 10.1021/ja00486a062Search in Google Scholar

[30] Herrington K.L., Kaler E.W., Miller D.D., Zasadzinski J.A., Chiruvolu S., Phase Behavior of Aqueous Mixtures of Dodecyltrimethylammonium Bromide (DTAB), J. Phys. Chem., 1993, 97, 13792-13802. 10.1021/j100153a058Search in Google Scholar

[31] Feitosa E., Brazolin M.R.S., Naal R.M.Z.G., Freire de Morais Del Lama M.P., Lopes J.R., Loh W., Vasilescu M., Structural organization of cetyltrimethylammonium sulfate in aqueous solution: The effect of Na2SO4, J. Colloid Interface Sci., 2006, 299, 883-889. 10.1016/j.jcis.2006.02.051Search in Google Scholar PubMed

[32] Kuperkar K., Abezgaus L., Prasad K., Bahadur P., Formation and Growth of Micelles in Dilute Aqueous CTAB Solutions in the Presence of NaNO3 and NaClO3, J. Surfact. Deterg., 2010, 13, 293-303. 10.1007/s11743-009-1173-zSearch in Google Scholar

[33] Ranganathan R., Tran L., Bales B.L., Surfactant- and Salt- Induced Growth of Normal Sodium Alkyl Sulfate Micelles Well above Their Critical Micelle Concentrations, J. Phys. Chem. B, 2000, 104, 2260-2264. 10.1021/jp993917xSearch in Google Scholar

[34] Bales B.L., Almgren M., Fluorescence Quenching of Pyrene by Copper(II) in Sodium Dodecyl Sulfate Micelles. Effect of Micelle Size As Controlled By Surfactant Concentration. J. Phys. Chem., 1995, 99, 15153-15162. 10.1021/j100041a035Search in Google Scholar

[35] Friedrich L.C., Silva V.O., Moreira Jr. P.F., Tcancenco C.M., Quina F.H., Time-Resolved Fluorescence Quenching Studies of Sodium Lauryl Ehter Sulfate Micelles, J. Braz. Chem. Soc., 2013, 24, 241- 245. 10.5935/0103-5053.20130031Search in Google Scholar

[36] Alargova R.G., Kochijansky I.I., Sierra M.L., Zana R., Micelle Aggregation Numbers of Surfactants in Aqueous Solutions: A Comparison between the Results from Steady-State and Time- Resolved Fluorescence Quenching, Langmuir, 1998, 14, 5412- 5418. 10.1021/la980565xSearch in Google Scholar

[37] Kalyanasundaram K., Thomas J.K., Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems, J. Am. Chem. Soc., 1977, 99, 2039-2044. 10.1021/ja00449a004Search in Google Scholar

[38] Dong D.C., Winnik M.A., The Py scale of solvent polarities, Can. J. Chem., 1984, 62, 2560-2565. 10.1139/v84-437Search in Google Scholar

[39] Berr S.S., Solvent Isotope Effects on Alkyltrimethylammonium Bromide Micelles as a Function of Alkyl Chain Length, J. Phys. Chem., 1987, 91, 4760-4765. 10.1021/j100302a024Search in Google Scholar

[40] Berr S., Jones R.R.M., Johnson Jr. J.S., Effect of counterion on the size and charge of alkyltrimethylammonium halide micelles as a function of chain length and concentration as determined by small-angle neutron scattering, J. Phys. Chem., 1992, 96, 5611- 5614. 10.1021/j100192a075Search in Google Scholar

[41] Thalberg K., van Stam J., Lindblad C., Almgren M., Lindman B.J., Time-resolved fluorescence and self-diffusion studies in systems of a cationic surfactant and an anionic polyelectrolyte, J. Phys. Chem., 1991, 95, 8975-8982. 10.1021/j100175a101Search in Google Scholar

[42] Danino D., Talmon Y., Zana R., Alkanediyl-a,wbis( dimethylalkylammonium bromide) Surfactants (Dimeric Surfactants). 5. Aggregation and Microstructure in Aqueous Solutions, Langmuir, 1995, 11, 1448-1456. 10.1021/la00005a008Search in Google Scholar

[43] Gragson D.E., Richmond G.L., Potential Dependent Alignment and Hydrogen Bonding of Interfacial Water Molecules at Charged Air/Water and Oil/Water Interfaces, J. Am. Chem. Soc., 1998, 120, 366-375. 10.1021/ja972570dSearch in Google Scholar

[44] Bruce C.D., Berkowitz M.L., Perera L., Forbes M.D.E., Molecular Dynamics Simulation of Sodium Dodecyl Sulfate Micelle in Water: Micellar Structural Characteristics and Counterion Distribution, J. Phys. Chem. B, 2002, 106, 3788-3793. 10.1021/jp013616zSearch in Google Scholar

[45] Bruce C.D., Senapati S., Berkowitz M.L., Perera L., Forbes M.D.E., Molecular Dynamics Simulations of Sodium Dodecyl Sulfate Micelle in Water: The Behavior of Water, J. Phys. Chem. B, 2002, 106, 10902-10907. 10.1021/jp025872xSearch in Google Scholar

[46] Sammalkorpi M., Karttunen M., Haataja M., Ionic Surfactant Aggregates In Saline Solutions: Sodium Dodecyl Sulfate (SDS) in the Presence of Excess Sodium Chloride (NaCl) or Calcium Chloride (CaCl2), J. Phys. Chem. B, 2009, 113, 5863-5870. 10.1021/jp901228vSearch in Google Scholar PubMed

[47] Yoshii N., Okazaki S., A molecular dynamics study of structure and dynamics of surfactant molecules in SDS spherical micelle, Cond. Matt. Phys., 2007, 10, 573-578. 10.5488/CMP.10.4.573Search in Google Scholar

[48] Tummala N.R., Striolo A., Role of Counterion Condensation in the Self-Assembly of SDS at the Water-Graphite Interface, J. Phys. Chem. B, 2008, 112, 1987-2000. 10.1021/jp077678mSearch in Google Scholar PubMed

[49] Schweighofer K.J., Essmann U., Berkowitz M., Simulation of Sodium Dodecyl Sulfate at the Water-Vapor and Water-Carbon Tetrachloride Interfaces at Low Surface Coverage, J. Phys. Chem. B, 1997, 101, 3793-3799. 10.1021/jp963460gSearch in Google Scholar

[50] Tang X., Koenig P.H., Larson R.G., Molecular Dynamics Simulations of Sodium Dodecyl Sulfate Micelles in Water—The Effect of the Force Field, J. Phys. Chem. B, 2014, 118, 3864-3880. 10.1021/jp410689mSearch in Google Scholar PubMed

[51] Nakagaki M., Yokohama S., Acid catalyzed hydrolysis of sodium dodecyl sulfate., J. Pharm. Sci., 1985, 74, 1047-1052. 10.1002/jps.2600741005Search in Google Scholar PubMed

[52] Rosen M.J., Surfactants and Interfacial Phenomena, 3rd ed., J. Wiley & Sons New York, 2004. 10.1002/0471670561Search in Google Scholar

[53] Bethell D., Fessey R.E., Namwindwa E., Roberts D.W., The hydrolysis of C12 primary alkyl sulfates in concentrated aqueous solutions. Part 1. General features, kinetic form and mode of catalysis in sodium dodecyl sulfate hydrolysis, J. Chem. Soc. Perkin Trans., 2001, 2, 1489-1495. 10.1039/b102957fSearch in Google Scholar

Received: 2014-9-27
Accepted: 2015-3-19
Published Online: 2015-5-27

© 2015 Martin Pisárčik et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1515/chem-2015-0103/html
Scroll to top button