Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 18, 2013

Bubble Columns with Internals: A Review

  • Ahmed A. Youssef EMAIL logo , Muthanna H. Al-Dahhan and Milorad P. Dudukovic

Abstract

Most industrial bubble column reactors require the utilization of internal structures for heat transfer and/or for controlling the flow structures and back mixing in the system. The internals denote all types of innards added to a bubble column, such as perforated plates, baffles, vibrating helical springs, mixers, and heat exchanger tubes. In commercial scale bubble columns, instrumentation probes, down-comers, and risers with heat exchangers are all considered. This review presents the state-of-knowledge of bubble columns with internals. It starts with an introduction. The second section discusses the horizontal internals, and the following section examines the studies involving vertical internals.

References

1. Duduković MP. Opaque multiphase reactors: experimentation, modeling and troubleshooting. Oil Gas Sci Technol 2000;55:135–58.10.2516/ogst:2000008Search in Google Scholar

2. Schlüter S, Steiff A, Weinspach, P-M. Heat transfer in two- and three-phase bubble column reactors with internals. Chem Eng Process 1995;34:157–72.10.1016/0255-2701(94)04002-8Search in Google Scholar

3. Duduković MP, Larachi F, Mills PL. Multiphase reactors – revised. Chem Eng Sci 1999;54:1975–95.10.1016/S0009-2509(98)00367-4Search in Google Scholar

4. Shetty SA, Kantak MV, Kelkar BG. Gas-phase backmixing in bubble – column reactors. AIChE J 1992;38:1013–26.10.1002/aic.690380705Search in Google Scholar

5. Krishna R, Ellenberger J. Gas hold-up in bubble column reactors operating in the churn-turbulent flow regime. Am Inst Chem Eng J 1996;42:2627–34.10.1002/aic.690420923Search in Google Scholar

6. Shaikh A, Al-Dahhan MH. A review on flow regime transition in bubble columns. Int J Chem Reac Eng 2007;5.10.2202/1542-6580.1368Search in Google Scholar

7. Amstel JP, Rietema K. Wet air oxidation of sewage sludge: part II-the oxidation of real sludges. Chem Ing Tech 1973;45:1205–11.10.1002/cite.330452005Search in Google Scholar

8. Deckwer WD. Bubble column reactors. Chichester: Wiley, 1992.Search in Google Scholar

9. Steynberg A, Dry M. Fischer-Tropsch technology. Amsterdam: Elsevier, 2004.10.1016/S0167-2991(04)80459-2Search in Google Scholar

10. Maretto C, Piccolo V. Fischer-Tropsch process with a multistage bubble column reactor, US Patent 5,827,902, 1998.Search in Google Scholar

11. Krishna R, Sie ST. Design and scale-up of the Fischer–Tropsch bubble column slurry reactor. Fuel Process Technol 2000;64:73–105.10.1016/S0378-3820(99)00128-9Search in Google Scholar

12. Behkish A, Lemoine R, Sehabiague L, Oukaci R, Morsi BI. Gas holdup and bubble size behavior in a large-scale slurry bubble column reactor operating with an organic liquid under elevated pressures and temperatures. Chem Eng J 2007;128:69–84.10.1016/j.cej.2006.10.016Search in Google Scholar

13. Duduković MP. Relevance of multiphase reaction engineering to modern technological challenges. Ind Eng Chem Res 2007;46:8674–86.10.1021/ie070371pSearch in Google Scholar

14. Krishna R, Ellenberger J. Improving gas–liquid contacting in bubble columns by vibration excitement. Int J Multiphase Flow 2002;28:1223–34.10.1016/S0301-9322(02)00016-2Search in Google Scholar

15. Alvaré J, Al-Dahhan MH. Liquid phase mixing in trayed bubble column reactors. Chem Eng Sci 2006;61:1819–35.10.1016/j.ces.2005.10.015Search in Google Scholar

16. Rados N. Slurry bubble column hydrodynamics: experimentation and modeling. DSc Thesis, Washington University, Saint Louis, MO, 2003.Search in Google Scholar

17. Svendsen HF, Jakobsen HA, Torvik R. Local flow structures in internal loop and bubble column reactors. Chem Eng Sci 1992;47:3297–304.10.1016/0009-2509(92)85038-DSearch in Google Scholar

18. Ranade VV. Flow in bubble columns: some numerical experiments. Chem Eng Sci 1992;4:1857–9.10.1016/0009-2509(92)80304-USearch in Google Scholar

19. Grienberger J, Hofmann H. Investigations and modelling of bubble columns. Chem Eng Sci 1992;47:2215–20.10.1016/0009-2509(92)87037-QSearch in Google Scholar

20. Sokolichin A, Eigenberger G. Gas–liquid flow in bubble columns and loop reactors: part I detailed modelling and numerical simulation. Chem Eng Sci 1994;49:5735–46.10.1016/0009-2509(94)00289-4Search in Google Scholar

21. Lapin A, Lübbert A. Numerical simulation of the dynamics of two-phase gas–liquid flows in bubble columns. Chem Eng Sci 1994;49:3661–74.10.1016/0009-2509(94)E0121-6Search in Google Scholar

22. Delnoij E, Kuipers JAM, van Swaaij WPM. Computational fluid dynamics applied to gas-liquid contactors. Chem Eng Sci, 1997;52:3623–38.10.1016/S0009-2509(97)00268-6Search in Google Scholar

23. Pan Y, Dudukovic MP, Chang M. Dynamic simulation of bubbly flow in bubble columns. Chem Eng Sci 1999;54:2481–89.10.1016/S0009-2509(98)00453-9Search in Google Scholar

24. Sanyal J, Vásquez S, Roy S, Dudukovic MP. Numerical simulation of gas–liquid dynamics in cylindrical bubble column reactors. Chem Eng Sci 1999;54:5071–83.10.1016/S0009-2509(99)00235-3Search in Google Scholar

25. Krishna R, van Baten JM. Rise characteristics of gas bubbles in a 2D rectangular column: VOF simulations vs. experiments. Int Commun Heat Mass Transf 1999;26:965–74.10.1016/S0735-1933(99)00086-XSearch in Google Scholar

26. Olmos E. Etude expérimentale et numérique des écoulements gaz-liquide en colonnes à bulles. Thèse de doctorat, Institut National Polytechnique de Lorraine, Nancy, France, 2002.Search in Google Scholar

27. Lapin A, Paaschen T, Junghans K, Lübbert A. Bubble column fluid dynamics, flow structures in slender columns with large-diameter ring-spargers. Chem Eng Sci 2002;57:1419–24.10.1016/S0009-2509(01)00348-7Search in Google Scholar

28. Chen P, Sanyal J, Dudukovic MP. Numerical simulation of bubble columns flows: effect of different breakup and coalescence closures. Chem Eng Sci 2005;60:1085–101.10.1016/j.ces.2004.09.070Search in Google Scholar

29. Chen P, Gupta P, Dudukovic MP, Toseland BA. Hydrodynamics of slurry bubble column during dimethyl ether (DME) synthesis: gas–liquid recirculation model and radioactive tracer studies. Chem Eng Sci 2006;61:6553–70.10.1016/j.ces.2006.05.011Search in Google Scholar

30. Gupta P, Ong B, Al-Dahhan MH, Dudukovic MP, Toseland BA. Hydrodynamics of churn turbulent bubble columns: gas-liquid recirculation and mechanistic modeling. Cat Today 2001;64:253–69.10.1016/S0920-5861(00)00529-0Search in Google Scholar

31. Degaleesan S, Dudukovic MP, Pan Y. Experimental study of gas induced liquid-flow structures in bubble columns. AIChE J 2001;47:1913–31.10.1002/aic.690470904Search in Google Scholar

32. Wild G, Poncin S, Li H, Olmos E. Some aspects of the hydrodynamics of bubble columns. Int J Chem Reac Eng 2003;1.10.2202/1542-6580.1095Search in Google Scholar

33. Yang GQ, Du B, Fan LS. Bubble formation and dynamics in gas–liquid–solid fluidization – a review. Chem Eng Sci 2007;62:2–27.10.1016/j.ces.2006.08.021Search in Google Scholar

34. Mudde RF. Gravity-driven bubbly flows. Ann Rev Fluid Mech 2003;37:393–423.10.1146/annurev.fluid.37.061903.175803Search in Google Scholar

35. Diaz ME, Iranzo A, Cuadra D, Barbero R, Montes FJ, Galan MA. Numerical simulation of the gas-liquid flow in a laboratory scale bubble column: influence of bubble size distribution and non-drag forces. Chem Eng J 2008;139:363–79.10.1016/j.cej.2007.08.015Search in Google Scholar

36. Jakobsen HA, Lindborg H, Dorao CA. Modeling of bubble column reactors: progress and limitations. Ind Eng Chem Res 2005;44:5107–151.10.1021/ie049447xSearch in Google Scholar

37. Devanathan N, Moslemian D, Dudukovic MP. Flow mapping in bubble columns using CARPT. Chem Eng Sci 1990;45:2285–91.10.1016/0009-2509(90)80107-PSearch in Google Scholar

38. Kumar SB, Devanathan N, Moslemian D, Dudukovic MP. Effect of scale on liquid recirculation in bubble columns. Chem Eng Sci 1994;49:5637–52.10.1016/0009-2509(94)00349-1Search in Google Scholar

39. Berg S, Schlüter S, Weinspach P-M. Ruckvermischung in Blasensaulen mit Einbauten. Chem Ing Tech 1995;67:289.10.1002/cite.330670305Search in Google Scholar

40. Millies M, Mewes D. Calculation of circulating flows in bubble columns. Chem Eng Sci 1995;50:2093–106.10.1016/0009-2509(94)00500-QSearch in Google Scholar

41. Pradhan AK, Parichia RK, De P. Gas hold-up in non Newtonian solutions in a bubble column with internals. Can J Chem Eng 1993;71:468–71.10.1002/cjce.5450710319Search in Google Scholar

42. Steiff A, Weinspach P-M. Heat transfer in stirred and non-stirred gas liquid reactors. Ger Chem Eng 1978;150:150–161.Search in Google Scholar

43. Dyer P. Catalyst and reactor development for a liquid phase Fischer-Tropsch process (Air Products and Chemicals Report to DOE-Final report Task 4), 1989.Search in Google Scholar

44. Davis B. Fischer–Tropsch synthesis: overview of reactor development and future potentialities. Top Cat 2005;32:143–68.10.1007/s11244-005-2886-5Search in Google Scholar

45. Fair JR, Lambright AJ, Anderson JW. Heat transfer and gas holdup in a sparged contactor. Ind Eng Chem Process Des Dev 1962;1:33–36.10.1021/i260001a006Search in Google Scholar

46. Schügerl K. Development of bioreaction engineering. Adv Biochem Eng Biotechnol 2000;70:41–76.10.1007/3-540-44965-5_3Search in Google Scholar PubMed

47. Fair JR. Trends in distillation technology. Ind Eng Chem 1962;54:53–57.10.1021/ie50630a008Search in Google Scholar

48. Fair JR. Developments in distillation technology. Ind Eng Chem 1964;56:61–64.10.1021/ie50658a011Search in Google Scholar

49. Mashelkar RA, Sharma, MM. Mass transfer in bubble and packed bubble columns. Trans Inst Chem Eng1970;48:162–72.Search in Google Scholar

50. Khoze AN, Burdukov AP, Nakoryakov VE, Pokusaev BG, Kuz’min, VA. Convective heat transfer in a dynamic two-phase bed. J Eng Phys 1971;20:759–76.10.1007/BF01122601Search in Google Scholar

51. Sekizawa T, Kubota H. Liquid mixing in multistage bubble columns. J Chem Eng Jpn 1974;7:441–6.10.1252/jcej.7.441Search in Google Scholar

52. Aksel’rod LS. Vorotnikova NI, Kozlov AA. Heat transfer and several aspects of hydrodynamics of bubble beds on sieve trays equipped with tube bundles. Heat Transf – Sov Res 1976;8:25–33.Search in Google Scholar

53. Vorotnikova NI, Aksel’rod LS. Heat transfer during the transverse flow of a bubbling stream around pipes and pipe bundles. Trudy Moskovskogo Instituta Khimicheskogo Mashinostroeniya 1975;57:101–108.Search in Google Scholar

54. Blass E, Cornelius W. The residence time distribution of solid and liquid in multistage bubble columns in the cocurrent flow of gas, liquid and suspended solid. Int J Multiphase Flow 1977;3:459–69.10.1016/0301-9322(77)90022-2Search in Google Scholar

55. Chen BH, Yang NS, McMillan AF. Gas holdup and pressure drop for air-water flow through plate bubble columns. Can J Chem Eng 1986;64:387–92.10.1002/cjce.5450640305Search in Google Scholar

56. Karr AE. Performance of a reciprocating-plate extraction column. AIChE J 1959;5:446–52.10.1002/aic.690050410Search in Google Scholar

57. Chen BH, Yang NS. Characteristics of a cocurrent multistage bubble column. Ind Eng Chem Res 1989;28:1405–10.10.1021/ie00093a020Search in Google Scholar

58. Kawasaki H, Hirano H, Tanaka H. Effects of multiple draft tubes with perforated plates on gas holdup and volumetric mass transfer coefficient in a bubble column. J Chem Eng Jpn 1994;27:669–70.10.1252/jcej.27.669Search in Google Scholar

59. Al Taweel AM, Ramadan AM, Moharam MR, El Mofty SM, Ityokumbul MT. Effect of honeycomb inserts on axial mixing in bubble columns. Chem Eng Res Des 1996;74a:456–62.Search in Google Scholar

60. Palaskar SN, De JK, Pandit AB. Liquid phase RTD studies in sectionalized bubble column. Chem Eng Technol 2000;23:61–9.10.1002/(SICI)1521-4125(200001)23:1<61::AID-CEAT61>3.0.CO;2-KSearch in Google Scholar

61. Maretto C, Krishna R. Design and optimisation of a multi-stage bubble column slurry reactor for Fischer-Tropsch synthesis. Cat Today 2001;66:241–48.10.1016/S0920-5861(00)00626-XSearch in Google Scholar

62. Kemoun A, Rados N, Li F, Al-Dahhan MH, Dudukovic MP, Mills PL, et al. Gas holdup in a trayed cold-flow bubble column. Chem Eng Sci 2001;56:1197–205.10.1016/S0009-2509(00)00340-7Search in Google Scholar

63. Colmenares A, Sevilla M, Goncalves JJ, Gonzalez-Mendizabal D. Fluid-dynamic experimental study in a bubble column with internals. Int Commun Heat Mass Transf 2001;28:389–98.10.1016/S0735-1933(01)00244-5Search in Google Scholar

64. Akita K, Yoshida F. Gas holdup and volumetric mass transfer coefficient in bubble columns. Ind Eng Chem Process Des Dev 1973;12:76–80.10.1021/i260045a015Search in Google Scholar

65. Schumpe A, Deckwer WD. Gas holdups, specific interfacial areas, and mass transfer coefficients of aerated carboxymethyl cellulose solutions in a bubble column. Ind Eng Chem Process Des Develop [87];21:706–11.10.1021/i200019a028Search in Google Scholar

66. Dreher AJ, Krishna R. Liquid-phase backmixing in bubble columns, structured by introduction of partition plates. Catalysis Today 2001;69:165–70.10.1016/S0920-5861(01)00365-0Search in Google Scholar

67. Nosier SA. Solid-liquid mass transfer at gas sparged tube bundles. Chem Eng Technol 2003;26:1151–54.10.1002/ceat.200301834Search in Google Scholar

68. Mochizuki S, Matsui T. Liquid-solid mass transfer rate in liquid-gas upward concurrent flow in packed beds. Chem Eng Sci 1974;29:1328–30.10.1016/0009-2509(74)80145-4Search in Google Scholar

69. Nosier SA, El-Kayar A, Farag HA, Sedahmed GH. Solid-liquid mass transfer at gas sparged fixed bed of Raschig rings. Int Commun Heat Mass Transf 1997;24:733–40.10.1016/S0735-1933(97)00058-4Search in Google Scholar

70. Cavatorta ON, Bohm U. Heat and mass transfer in gas sparging systems: empirical correlations and theoretical models. Chem Eng Res Des 1988;66a:265–74.Search in Google Scholar

71. Doshi YK, Pandit AB. Effect of internals and sparger design on mixing behavior in sectionalized bubble column. Chem Eng J (Amsterdam, Netherlands) 2005;112:117–29.Search in Google Scholar

72. Pandit AB, Doshi YK. Mixing time studies in bubble column reactor with and without internals. Int J Chem Reac Eng 2005;3.10.2202/1542-6580.1182Search in Google Scholar

73. Alvaré J, Al-Dahhan MH. Gas holdup in trayed bubble column reactors. Ind Eng Chem Res 2006;45:3320–26.10.1021/ie051442sSearch in Google Scholar

74. Mecaial N, Sadik B. Hydrodynamic and RTD of Sectionalized Bubble Column. Proceedings of the 12th International Conference on Fluidization – New Horizons in Fluidization Engineering, 2007.Search in Google Scholar

75. Hall CC, Taylor AH. Design and operation of a fluid catalyst pilot plant for Fischer-Tropsch synthesis. J Inst Petrol 1955;41:101–24.Search in Google Scholar

76. Kölbel H, Ackermann P. US Patent 2,853,369 (Sept. 23, 1958).Search in Google Scholar

77. Kölbel H, Langheim R. US Patent 2,852,350 (Sept. 16, 1958).Search in Google Scholar

78. Hofmann H. Packed upflow bubble columns. Chemie Ingenieur Technik 1982;54:865–76.10.1002/cite.330541002Search in Google Scholar

79. Gestrich W, Harth H. Liquid-phase backmixing in packed bubble columns. Chemie Ingenieur Technik 1981;53:308–14.10.1002/cite.330530503Search in Google Scholar

80. Carleton AJ, Flain RJ, Rennie J, Valentin HH. Some properties of a packed bubble column. Chem Eng Sci 1967;22:1839–45.10.1016/0009-2509(67)80214-8Search in Google Scholar

81. Voyer RD, Miller AI. Improved gas-liquid contacting in co-current flow. Can J Chem Eng 1968;46:335–41.10.1002/cjce.5450460510Search in Google Scholar

82. Magnussen P, Shumacher V, Rotermund GW, Hafnef F. Residence time behavior of the liquid phase in bubble columns with large diameter. Chemie Ingenieur Technik 1978;50:811.10.1002/cite.330501022Search in Google Scholar

83. Korte H. Heat transfer in bubble columns with and without internals. PhD Thesis, University of Dortmund, 1987.Search in Google Scholar

84. Wu C. Heat transfer and bubble dynamics in slurry bubble columns for Fischer-Tropsch clean alternative energy. DSc Thesis, Washington University, Saint Louis, MO, 2007.Search in Google Scholar

85. Shah YT, Ratway CA, Mcilvried HG. Back-mixing characteristics of a bubble column with vertically suspended tubes. Trans Ins Chem Eng 1978;56:107–12.Search in Google Scholar

86. Kölbel H, Ralek M. The Fischer-Tropsch synthesis in the liquid phase. Cat Rev, Sci Eng 1980;21:225–74.10.1080/03602458008067534Search in Google Scholar

87. Hagino H, Odagiri H, Okutani J. US Patent 4,327,042 (Dec. 22, 1980).Search in Google Scholar

88. Yamashita F. Effects of vertical pipe and rod internals on gas holdup in bubble columns. J Chem Eng Jpn 1987;20:204–206.10.1252/jcej.20.204Search in Google Scholar

89. O’Dowd W, Smith DN, Ruether JA, Saxena SC. Gas and solids behavior in a baffled and unbaffled slurry bubble column. AIChE J 1987;33:1959–1970.10.1002/aic.690331204Search in Google Scholar

90. Wasan DT, Ahliwalia MS, Consecutive film and surface renewal mechanism for heat and mass transfer from a wall. Chem Eng Sci 1969;24:1535–42.10.1016/0009-2509(69)80092-8Search in Google Scholar

91. Bernemann K. On the hydrodynamics and mixing of the liquid phase in bubble columns with longitudinal tube bundles. PhD Thesis, University of Dortmund, 1989.Search in Google Scholar

92. Forret A, Schweitzer JM, Gauthier T, Krishna R, Schweich D. Liquid dispersion in large diameter bubble columns, with and without internals. Can J Chem Eng 2003;81:360–66.10.1002/cjce.5450810304Search in Google Scholar

93. Kafarov VV, Kruglik AE, Trofimov VI. Comparative evaluation of the effect of installation of some standard heat exchangers in bubble-type columns on the average gas content and structure of liquid-phase streams. Zhurnal Prikladnoi Khimii 1975;48:229–32.Search in Google Scholar

94. Gaspillo PD, Goto S. Mass transfer in bubble slurry column with static mixer in draft tube. J Chem Eng Jpn 1991;24:680–2.10.1252/jcej.24.680Search in Google Scholar

95. Saxena SC, Patel BB. Heat transfer investigations in a bubble column with immersed probes of different diameters. Int Commun Heat and ass Transf 1991;18:467–78.10.1016/0735-1933(91)90062-9Search in Google Scholar

96. Saxena SC, Rao NS, Yousuf M. Hydrodynamic and heat transfer investigations conducted in a bubble column with fine powders and a viscous liquid. Powder Technol 1991;67:265–75.10.1016/0032-5910(91)80108-USearch in Google Scholar

97. Saxena SC, Chen ZD. Heat transfer in baffled bubble columns of dilute slurries of fine powders and viscous liquids. Exp Heat Transf, Fluid Mech Thermodyn 1993. Proc. World Conf., 1993; 3rd, 2:1451–8.10.1016/0894-1777(93)90264-JSearch in Google Scholar

98. Li H, Prakash A. Heat transfer and hydrodynamics in a three-phase slurry bubble column. Ind Eng Chem Res 1997;36:4688–94.10.1021/ie9701635Search in Google Scholar

99. Luo X, Lee DJ, Lau R, Yang GQ, Fan L-S. Maximum stable bubble size and gas hold up in high-pressure slurry bubble column. AIChE J 1999;45:665–80.10.1002/aic.690450402Search in Google Scholar

100. Saxena SC, Rao NS, Thimmapuram PR. Gas phase holdup in slurry bubble columns for two- and three-phase systems. Chem Eng J (Amsterdam, Netherlands) 1992;49:151–9.10.1016/0300-9467(92)80051-BSearch in Google Scholar

101. Saxena SC. A novel heat exchanger design for slurry bubble columns. Transp Phenom Therm Eng Proc Int Symp 1993; 6th:896–901.Search in Google Scholar

102. Thimmapuram PR, Rao NS, Saxena SC. Heat transfer from immersed tubes in a baffled slurry bubble column. Chem Eng Commun 1993;120:27–43.10.1080/00986449308936122Search in Google Scholar

103. Deckwer, WD, Louisi, Y, Zaidi, A, and Ralek, M. “Hydrodynamics Properties of the Fischer-Tropsch Slurry Process” Ind. Eng. Cem. Process Des. Dev. 1980;19:699–708.Search in Google Scholar

104. Kast W. Analyse des wärmeübergangs in blasensäulen. Int J Heat Mass Transf 1962;5:329–36.10.1016/0017-9310(62)90022-4Search in Google Scholar

105. Saxena SC, Chen ZD. Hydrodynamics and heat transfer of baffled and unbaffled slurry bubble columns. Rev Chem Eng 1994;10:193–400.Search in Google Scholar

106. De SK, Ghosh S, Parichha RK, De P. Gas hold-up in two phase system with internals. Indian Chem Eng Section A 1999;41:T54–8.Search in Google Scholar

107. Chen J, Li F, Degaleesan S, Gupta P, Al-Dahhan MH, Dudukovic MP, Toseland BA. Fluid dynamic parameters in bubble columns with internals. Chem Eng Sci 1999;54:2187–97.10.1016/S0009-2509(99)00003-2Search in Google Scholar

108. Larachi F, Desvigne D, Donnat L, Schweich D. Simulating the effects of liquid circulation in bubble columns with internals. Chem Eng Sci 2006;61:4195–206.10.1016/j.ces.2006.01.053Search in Google Scholar

109. Yates IC, Satterfield CN. Intrinsic kinetics of the Fischer-Tropsch synthesis on a cobalt catalyst. Energy Fuels 1991;5:168–73.10.1021/ef00025a029Search in Google Scholar

110. Nosier SA, Mohamed MM. Mass transfer at helical coils in bubble columns. Chem Biochem Eng Q 2004;18:235–39.Search in Google Scholar

111. Balamurugan V, Subbaro D. Bubble size and holdup in bubble columns with vibrating internals. AIChE Spring National Meeting, 2006.Search in Google Scholar

112. Soraker P, Lian P, Vankan S. WO Patent 2005/065813 A1 (July 21 2005).10.1016/S0749-2081(05)00148-8Search in Google Scholar

113. Hawthorne WH, Ibsen MD, Pedersen PS, Bohn MS. US Patent 7,108,835 B2 (Sep. 19, 2006).Search in Google Scholar

114. Forret A, Schweitzer JM, Gauthier T, Krishna R, Schweich D. Scale up of slurry bubble reactors. Oil Gas Sci Technol 2006;61:443–58.10.2516/ogst:2006044aSearch in Google Scholar

115. Youssef AA, Al-Dahhan MH. Impact of internals on the gas holdup and bubble properties of a bubble column. Ind Eng Chem Res 2009;48:8007–13.10.1021/ie900266qSearch in Google Scholar

116. Saxena SC, Rao NS, Saxena AC. Estimation of heat transfer coefficient for immersed surfaces in bubble columns involving fine powders. Powder Technol 1990;63:197–202.10.1016/0032-5910(90)80042-WSearch in Google Scholar

117. Saxena SC, Rao NS. Estimation of gas holdup in a slurry bubble column with internals: nitrogen–therminol–magnetite system. Powder Technol 1993;75:153–8.10.1016/0032-5910(93)80076-MSearch in Google Scholar

118. Degaleesan S. Turbulence and liquid mixing in bubble columns. PhD Thesis, Washington University, Saint Louis, Missouri, USA, 1997.Search in Google Scholar

119. Ong B. Experimental investigation of bubble column hydrodynamics – effect of elevated pressure and superficial gas velocity. PhD Thesis, Washington University, Saint Louis, USA, 2003.Search in Google Scholar

120. Han, L. Hydrodynamics, back-mixing, and mass transfer in a slurry bubble column reactor for Fischer-Tropsch alternative fuels, D. Sc. dissertation, Washington University in St. Louis, 2007.Search in Google Scholar

121. Westerterp KR, van Swaaij WPM, Beenackers AACM. Chemical reactor design and operation. Chichester: Wiley, 1987.Search in Google Scholar

122. Koros RM, Westfield NJ US Patent 5,384,336 (Jan. 24, 1995).Search in Google Scholar

Published Online: 2013-06-18

©2013 by Walter de Gruyter Berlin / Boston

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1515/ijcre-2012-0023/html
Scroll to top button