Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 5, 2012

Vinylruthenium-triarylamine conjugates as electroswitchable polyelectrochromic NIR dyes

  • Walther Polit , Thomas Exner , Evelyn Wuttke and Rainer F. Winter EMAIL logo

Abstract

We here report on triarylamine-derived styryl ruthenium complexes 13 where one (1), two (2) or three (3) vinyl ruthenium moieties are appended to a triphenylamine core. The near equivalency of the styryl ruthenium and the triarylamine redox systems leads to strong interactions between these moieties and strong mixing of the respective frontier orbitals. This results, inter alia, in the observation of two to four consecutive, reversible one-electron redox couples with potential splittings of 185–435 mV. The associated radical cations and higher oxidized forms show strong absorptions whose positions vary from deep in the near-infrared (NIR) to the border region between the Vis and NIR regimes as a function of the oxidation state. Extinction coefficients and oscillator strengths reach rather impressive values of up to 90 000 l mol-1 cm-1 and ≥1.0. Complexes 13 thus constitute polyelectrochromic dyes with two to three addressable and distinguishable states that can be reversibly interconverted by application of an appropriate potential. The electronic transitions underlying the intense low energy absorptions are assigned with the aid of time dependent-density functional theory (TD-DFT) and involve strongly delocalized molecular orbitals (MOs). Charge and spin delocalization in the (radical) cations are probed by electron paramagnetic resonance spectroscopy (EPR) and infrared (IR) spectroelectrochemistry.


Corresponding author: Rainer F. Winter: Universität Konstanz, Fachbereich Chemie, Universitätsstraße 10, D-78457 Konstanz, Deutschland

We are indebted to Deutsche Forschungsgemeinschaft (DFG) for financial support of this work (grant Wi1262/9-1). We also wish to thank Dr. Staislav Záliš, Heyrovský Institute of Physical Chemistry, v.v.i., Prague for his help with the quantum chemical calculations and Ms. Katrin Hemminger for her contributions during her Bachelor work. We also wish to thank the state of Baden-Württemberg for providing access to the bwGRiD computational facilities.

References

Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170.Search in Google Scholar

Amthor, S.; Lambert, C. [2.2]Paracyclophane-bridged mixed-valence compounds: application of a generalized Mulliken-Hush three-level model. J. Phys. Chem. A 2006, 110, 1177–1189.10.1021/jp0550309Search in Google Scholar

Amthor, S.; Noller, B.; Lambert, C. UV/Vis/NIR spectral properties of triarylamines and their corresponding radical cations. Chem. Phys. 2005, 316, 141–152.Search in Google Scholar

Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77, 123.10.1007/BF01114537Search in Google Scholar

Atwood, C. G.; Geiger, W. E. Investigation of time-dependent delocalization and the correlation of carbonyl IR shifts with Delta E1/2 values for hydrocarbon linked class II and class III mixed-valent complexes. J. Am. Chem. Soc. 2000, 122, 5477–5485.Search in Google Scholar

Atwood, C. G.; Geiger, W. E.; Rheingold, A. L. Evidence for time-dependent valence detrapping in a mixed-valent dimanganese fulvalenyl cation. J. Am. Chem. Soc. 1993, 115, 5310–5311.Search in Google Scholar

Barlow, S.; Risko, C.; Chung, S.-J.; Tucker, N. M.; Coropceanu, V.; Jones, S. C.; Levi, Z.; Brédas, J.-L.; Marder, S. R. Intervalence transitions in the mixed-valence monocations of bis(triarylamines) linked with vinylene and phenylene-vinylene bridges. J. Am. Chem. Soc. 2005, 127, 16900–16911.Search in Google Scholar

Batat, P.; Cantuel, M.; Jonusauskas, G.; Scarpantonio, L.; Palma, A.; O’Shea, D. F.; McClenaghan, N. D. BF2-Azadipyrromethenes: probing the excited-state dynamics of a NIR fluorophore and photodynamic therapy agent. J. Phys. Chem. A 2011, 115, 14034–14039.Search in Google Scholar

Beletskaya, I. P.; Cheprakov, A. V. Copper in cross-coupling reactions: the post-Ullmann chemistry. Coord. Chem. Rev. 2004, 248, 2337–2364.Search in Google Scholar

Bender, T. P.; Graham, J. F.; Duff, J. M. Effect of substitution on the electrochemical and xerographic properties of triarylamines: correlation to the Hammett parameter of the substituent and calculated HOMO energy level. Chem. Mater. 2001, 13, 4105–4111.Search in Google Scholar

Berlin, Y. A.; Hutchison, G. R.; Rempala, P.; Ratner, M. A.; Michl, J. Charge hopping in molecular wires as a sequence of electron-transfer reactions. J. Phys. Chem. A 2003, 107, 3970–3980.Search in Google Scholar

Burke, A.; Schmidt-Mende, L.; Ito, S.; Grätzel, M. A novel blue dye for near-IR dye-sensitised solar cell applications. Chem. Commun. 2007, 43, 234–236.Search in Google Scholar

Cancés, E.; Menucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041.Search in Google Scholar

Chen, J.; Winter, R. F. Studies on a vinyl ruthenium-modified squaraine dye: multiple Vis/NIR absorbance switching through dye and substituent-based redox processes. Chem. Eur. J. 2012, 18, 10733–10741.Search in Google Scholar

Choi, H.; Raabe, I.; Kim, D.; Teocoli, F.; Kim, C.; Song, K.; Yum, J.-H.; Ko, J.; Nazeeruddin, M. K.; Grätzel, M. High molar extinction coefficient organic sensitizers for efficient dye-sensitized solar cells. Chem. Eur. J. 2010, 16, 1193–1201.Search in Google Scholar

Clifford, J. N.; Martinez-Ferrero, E.; Viterisi, A.; Palomares, E. Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells. Chem. Soc. Rev. 2011, 40, 1635–1646.Search in Google Scholar

Connelly, N. G.; Geiger, W. E. Chemical redox agents for organometallic chemistry. Chem. Rev. 1996, 96, 877–910.Search in Google Scholar

Coropceanu, V.; Malagoli, M.; André, J. M.; Brédas, J. L. Charge-transfer transitions in triarylamine mixed-valence systems: a joint density functional theory and vibronic coupling study. Am. J. Chem. Soc. 2002, 124, 10519–10530.Search in Google Scholar

Coropceanu, V.; Gruhn, N. E.; Barlow, S.; Lambert, C.; Duvirage, J. C.; Bill, T. G.; Nöll, G.; Marder, S. R.; Brédas, J.-L. Electronic coupling in organic mixed-valence compounds: the contribution of photoelectron spectroscopy. J. Am. Chem. Soc. 2004, 126, 2727–2731.Search in Google Scholar

Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681.Search in Google Scholar

Creutz, C. Mixed-valence complexes of d5-d6 metal centers. Progr. Inorg. Chem. 1983, 30, 1–73.Search in Google Scholar

Creutz, C.; Taube, H. A direct approach to measuring the Franck-Condon barrier to electron transfer between metal ions. J. Am. Chem. Soc. 1969, 91, 3988–3989.Search in Google Scholar

Creutz, C.; Taube, H. Binuclear complexes of ruthenium ammines. J. Am. Chem. Soc. 1973, 95, 1086–1094.Search in Google Scholar

Dapperheld, S.; Steckhan, E.; Brinkhaus, K.-H.G.; Esch, T. Organic electron transfer systems, II substituted triarylamine cation-radical redox systems – synthesis, electrochemical and spectroscopic properties, Hammet behavior, and suitability as redox catalysts. Chem. Ber. 1991, 124, 2557–2567.Search in Google Scholar

Detty, M. R.; Gibson, S. L.; Wagner, S. J. Current clinical and preclinical photosensitizers for use in photodynamic therapy. J. Med. Chem. 2004, 47, 3897–3915.Search in Google Scholar

Dogan, A.; Sarkar, B.; Klein, A.; Lissner, F.; Schleid, T.; Fiedler, J.; Záliš, S.; Jain, V. K.; Kaim, W. Complex reduction chemistry of (abpy)PtCl2, abpy=2,2'-azobispyridine: formation of cyclic [(μ,η21-abpy)PtCl]22+ with a new coordination mode for abpy and a near-infrared ligand-to-ligand intervalence charge transfer absorption of the one-electron reduced state. Inorg. Chem. 2004, 43, 5973–5980.Search in Google Scholar

Dolg, M.; Stoll, H.; Preuss, H. Energy-adjusted ab initio pseudopotentials for the rare earth elements. J. Chem. Phys. 1989, 90, 1730–1734.Search in Google Scholar

Escobedo, J. O.; Rusin, O.; Lim, S.; Strongin, R. M. NIR dyes for bioimaging applications. Curr. Opin. Chem. Biol. 2010, 14, 64–70.10.1016/j.cbpa.2009.10.022Search in Google Scholar

Fabian, J.; Nakazumi, H.; Matsuoka, M. Near-infrared absorbing dyes. Chem. Rev. 1992, 92, 1197–1226.Search in Google Scholar

Fitzgerald, E. C.; Ladjarafi, A.; Brown, N. J.; Collison, D.; Costuas, K.; Edge, R.; Halet, J.-F.O.; Justaud, F. D. R.; Low, P. J.; Meghezzi, H.; et al. Spectroscopic evidence for redox isomerism in the 1,4-diethynylbenzene-bridged heterobimetallic cation [[Fe(dppe)Cp}(μ-C≡CC6H4C≡C)[Mo(dppe)(η-C7H7)}]PF6. Organometallics 2011, 30, 4180–4195.Search in Google Scholar

Fox, M. A.; Le Guennic, B.; Roberts, R. L.; Bruce, D. A.; Yufit, D. S.; Howard, J. A. K.; Manca, G.; Halet, J.-F.; Hartl, F.; Low, P. J. Simultaneous bridge-localized and mixed-valence character in diruthenium radical cations featuring diethynylaromatic bridging ligands. J. Am. Chem. Soc. 2011, 133, 18433–18446.Search in Google Scholar

Frisch, M. J.; Trucks, G.; Schlegel, H. B.; Scuseri, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision B.01. Gaussian Inc., 2009.Search in Google Scholar

Grelaud, G.; Cifuentes, M. P.; Schwich, T.; Argouarch, G.; Petrie, S.; Stranger, R.; Paul, F.; Humphrey, M. G. Multistate redox-active metalated triarylamines. Eur. J. Inorg. Chem. 2012, 2012, 65–75.Search in Google Scholar

Gunnarsson, O.; Lundqvist, B. I. Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys. Rev. B 1976, 13, 4274.10.1103/PhysRevB.13.4274Search in Google Scholar

Hariharan, P. H.; Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 1973, 28, 213–222.Search in Google Scholar

Hartwig, J. F. Carbon-heteroatom bond-forming reductive eliminations of amines, ethers, and sulfides. Acc. Chem. Res. 1998a, 31, 852–860.Search in Google Scholar

Hartwig, J. F. Transition metal catalyzed synthesis of arylamines and aryl ethers from aryl halides and triflates: scope and mechanism. Angew. Chem. Int. Ed. Engl. 1998b, 37, 2046–2067.Search in Google Scholar

Hartwig, J. F. Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc. Chem. Res. 2008, 41, 1534–1544.Search in Google Scholar

Heckmann, A.; Lambert, C. Neutral organic mixed-valence compounds: synthesis and all-optical evaluation of electron-transfer parameters. J. Am. Chem. Soc. 2007, 129, 5515–5527.Search in Google Scholar

Heckmann, A.; Lambert, C.; Goebel, M.; Wortmann, R. Synthesis and photophysics of a neutral organic mixed-valence compound. Angew. Chem. Int. Ed. Engl. 2004, 43, 5851–5856.Search in Google Scholar

Heckmann, A.; Amthor, S.; Lambert, C. Mulliken-Hush analysis of a bis(triarylamine) mixed-valence system with a NN distance of 28.7 Å. Chem. Commun. 2006, 42, 2959–2961.Search in Google Scholar

Hilderbrand, S. A.; Weissleder, R. Near-infrared fluorescence: application to in vivo molecular imaging. Curr. Opin. Chem. Biol. 2010, 14, 71–79.Search in Google Scholar

Hill, A. F. Comprehensive Organometallic Chemistry II. Shriver, D. E.; Bruce, M. I., Eds. Pergamon: Oxford, 1995, pp. 399–411.Search in Google Scholar

Jones, S. C.; Coropceanu, V.; Barlow, S.; Kinnibrugh, T.; Timofeeva, T.; Brédas, J.-L.; Marder, S. R. Delocalization in platinum-alkynyl systems: a metal-bridged organic mixed-valence compound. J. Am. Chem. Soc. 2004, 126, 11782–11783.Search in Google Scholar

Kaim, W. Concepts for metal complex chromophores absorbing in the near infrared. Coord. Chem. Rev. 2011, 255, 2503–2513.Search in Google Scholar

Kaim, W.; Klein, A.; Glöckle, M. Exploration of mixed-valence chemistry: inventing new analogues of the Creutz-Taube ion. Acc. Chem. Res. 2000, 33, 755–763.Search in Google Scholar

Kattnig, D. R.; Mladenova, B.; Grampp, G.; Kaiser, C.; Heckmann, A.; Lambert, C. Electron paramagnetic resonance spectroscopy of bis(triarylamine) paracyclophanes as model compounds for the intermolecular charge-transfer in solid state materials for optoelectronic applications. J. Phys. Chem. C 2009, 113, 2983–2995.Search in Google Scholar

Kaupp, M.; Renz, M.; Parthey, M.; Stolte, M.; Wuerthner, F.; Lambert, C. Computational and spectroscopic studies of organic mixed-valence compounds: where is the charge? Phys. Chem. Chem. Phys. 2011, 13, 16973–16986.Search in Google Scholar

Keith, T.; Millam, J. Semichem Inc., Shawnee Mission, KS, 2009.Search in Google Scholar

Krejcik, M.; Danek, M.; Hartl, F. Simple construction of an infrared optically transparent thin-layer cell. Applications to the redox reactions of ferrocene, Mn2(CO)10 and Mn(CO)3(3,5-di-t-butyl-catecholate). J. Electroanal. Chem. 1991, 317, 179–187.Search in Google Scholar

Küchle, W.; Dolg, M.; Stoll, H.; Preuss, H. Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys. 1994, 100, 7535–7532.Search in Google Scholar

Lambert, C.; Nöll, G. The class II/III transition in triarylamine redox systems. J. Am. Chem. Soc. 1999, 121, 8434–8442.Search in Google Scholar

Lambert, C.; Nöll, G.; Schelter, J. Bridge-mediated hopping or superexchange electron-transfer processes in bis(triarylamine) systems. Nat. Mater. 2002, 1, 69–73.Search in Google Scholar

Lambert, C.; Amthor, S.; Schelter, J. From valence trapped to valence delocalized by bridge state modification in bis(triarylamine) radical cations: evaluation of coupling matrix elements in a three-level system. J. Phys. Chem. A 2004, 108, 6474–6486.Search in Google Scholar

Lambert, C.; Risko, C.; Coropceanu, V.; Schelter, J.; Amthor, S.; Gruhn, N. E.; Durivage, J. C.; Brédas, L.-L. Electronic coupling in tetraanisylarylenediamine mixed-valence systems: the interplay between bridge energy and geometric factors. J. Am. Chem. Soc. 2005, 127, 8508–8516.Search in Google Scholar

Lancaster, K.; Odom, S. A.; Jones, S. C.; Thayumanavan, S.; Marder, S. R.; Brédas, J.-L.; Coropceanu, V.; Barlow, S. Intramolecular electron-transfer rates in mixed-valence triarylamines: measurement by variable-temperature ESR spectroscopy and comparison with optical data. J. Am. Chem. Soc. 2009, 131, 1717–1723.Search in Google Scholar

Levitus, M.; Schmieder, K.; Ricks, H.; Shimizu, K. D.; Bunz, U. H. F.; Garcia-Garibay, M. A. Steps to demarcate the effects of chromophore aggregation and planarization in poly(phenyleneethynylene)s. 1. Rotationally interrupted conjugation in the excited states of 1,4-bis(phenylethynyl)benzene. J. Am. Chem. Soc. 2001, 123, 4259–4265.Search in Google Scholar

Li, F.; Cheng, J.; Chai, X.; Jin, S.; Wu, X.; Yu, G.-A.; Liu, S. H.; Chen, G. Z. Synthesis, characterization, and electrochemical properties of diruthenium complexes bridged by anthraquinones. Organometallics 2011, 30, 1830–1837.Search in Google Scholar

Linseis, M.; Winter, R. F.; Sarkar, B.; Kaim, W.; Záliš, S. Multistep electrochromic behaviour from an organometallic tetranuclear complex of a tetradonor-substituted olefin. Organometallics 2008, 27, 3321–3324.Search in Google Scholar

Linseis, M.; Záliš, S.; Zabel, M.; Winter, R. F. Ruthenium stilbenyl and diruthenium distyrylethene complexes: aspects of electron delocalization and electrocatalytic isomerization of the z-isomer. J. Am. Chem. Soc. 2012, dx.doi.org/10.102/ja3059606.10.1021/ja3059606Search in Google Scholar

Liu, S. H.; Xia, H.; Wen, T. B.; Zhou, Z.; Jia, G. Synthesis and characterization of bimetallic ruthenium complexes with (CH)6 and related bridges. Organometallics 2003, 22, 737–743.Search in Google Scholar

Low, P. J.; Paterson, M. A. J.; Puschmann, H.; Goeta, A. E.; Howard, J. A. K.; Lambert, C.; Cherryman, J. C.; Tackley, D. R.; Leeming, S.; Brown, B. Crystal, molecular and electronic structure of N,N'-diphenyl-N,N'-bis(2,4-dimethylphenyl)-(1,1'-biphenyl)-4,4'-diamine and the corresponding radical cation. Chem. Eur. J. 2004, 10, 83–91.Search in Google Scholar

Lu, C. C.; Bill, E.; Weyhermüller, T.; Bothe, E.; Wieghardt, K. Neutral bis(α-iminopyridine)metal complexes of the first-row transition ions (Cr, Mn, Fe, Co, Ni, Zn) and their monocationic analogues: mixed valency involving a redox noninnocent ligand system. J. Am. Chem. Soc. 2008, 130, 3181–3197.Search in Google Scholar

Mai, C.-L.; Huang, W.-K.; Lu, H.-P.; Lee, C.-W.; Chiu, C.-L.; Liang, Y.-R.; Diau, E. W.-G.; Yeh, C.-Y. Synthesis and characterization of diporphyrin sensitizers for dye-sensitized solar cells. Chem. Commun. 2010, 46, 809–811.Search in Google Scholar

Malagoli, M.; Brédas, J. L. Density functional theory study of the geometric structure and energetics of triphenylamine-based hole-transporting molecules. Chem. Phys. Lett. 2000, 327, 13–17.Search in Google Scholar

Man, W. Y.; Xia, J.-L.; Brown, N. J.; Farmer, J. D.; Yufit, D. S.; Howard, J. A. K.; Liu, S. H.; Low, P. J. Spectroscopic and computational studies of the ligand redox non-innocence in mono- and binuclear ruthenium vinyl complexes. Organometallics 2011, 30, 1852–1858.Search in Google Scholar

Marchenko, A. V.; Gérard, H.; Eisenstein, O.; Caulton, K. G. A comprehensive view of M-H addition across the RCCH bond: frustration culminating in ultimate union. New J. Chem. 2001a, 25, 1244–1255.Search in Google Scholar

Marchenko, A. V.; Gérard, H.; Eisenstein, O.; Caulton, K. G. A comparative study of olefin or acetylene insertion into Ru-H or Os-H of MHCl(CO)(phosphine)2. New J. Chem. 2001b, 25, 1382–1388.Search in Google Scholar

Maurer, J.; Winter, R. F.; Sarkar, B.; Fiedler, J.; Záliš, S. Bridge dominated oxidation of a diruthenium 1,3-divinylphenylene complex. Chem. Commun. 2004, 40, 1900–1901.Search in Google Scholar

Maurer, J.; Sarkar, B.; Zalis, S.; Winter, R. F. Electron delocalization in mixed-valence butadienediyl-bridged diruthenium complexes. J. Solid State Electrochem. 2005, 9, 738–749.Search in Google Scholar

Maurer, J.; Sarkar, B.; Schwederski, B.; Kaim, W.; Winter, R. F.; Záliš, S. Divinylphenylene bridged diruthenium complexes bearing Ru(CO)Cl(PiPr3)2 entities. Organometallics 2006, 25, 3701–3712.Search in Google Scholar

Maurer, J.; Sarkar, B.; Kaim, W.; Winter, R. F.; Záliš, S. Towards new organometallic wires. Tetraruthenium complexes bridged by phenylenevinylene and vinylpyridine ligands. Chem. Eur. J. 2007, 13, 10257–10272.Search in Google Scholar

Maurer, J.; Linseis, M.; Sarkar, B.; Schwederski, B.; Niemeyer, M.; Kaim, W.; Záliš, S.; Anson, C.; Zabel, M.; Winter, R. F. Ruthenium complexes with vinyl, styryl, and vinylpyrenyl ligands: a case of non-innocence in organometallic chemistry. J. Am. Chem. Soc. 2008, 130, 259–268.Search in Google Scholar

Mennucci, B.; Tomasi, J. Continuum solvation models: a new approach to the problem of solute’s charge distribution and cavity boundaries. J. Chem. Phys. 1997, 106, 5151–5158.Search in Google Scholar

Mihaljevic, T.; Kim, S.; Lim, Y. T.; Lee, J.; Nakayama, A.; Parker, J. A.; Laurence, R. G.; Soltesz, E. G.; De Grand, A. M.; Dor, D. M.; et al. V. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 2004, 22, 93–97.Search in Google Scholar

Monnier, F.; Taillefer, M. Catalytic C-C, C-N, and C-O Ullmann-type coupling reactions. Angew. Chem. Int. Ed. Engl. 2009, 48, 6954–6971.Search in Google Scholar

Mortimer, R. J. Electrochromic materials. Chem. Soc. Rev. 1997, 26, 147–156.Search in Google Scholar

Mortimer, R. J. Organic electrochromic materials. Electrochim. Acta 1999, 44, 2971–2981.10.1016/S0013-4686(99)00046-8Search in Google Scholar

Mortimer, R. J. Metal complexes as dyes for optical data storage and electrochromic materials. Comprehensive Coord. Chem. 2004, 9, 581–619.Search in Google Scholar

Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R. Electrochromic organic and polymeric materials for display applications. Organic Displays 2006, 27, 2–18.Search in Google Scholar

Mücke, P.; Linseis, M.; Záliš, S.; Winter, R. F. Vinyl-ruthenium entities as markers for intramolecular electron transfer processes. Inorg. Chim. Acta 2011a, 374, 36–50.10.1016/j.ica.2011.03.071Search in Google Scholar

Mücke, P.; Zabel, M.; Edge, R.; Collison, D.; Clément, S.; Záliš, S.; Winter, R. F. Electron delocalization in vinyl ruthenium substituted cyclophanes: assessment of the through-space and the through-bond pathways. J. Organomet. Chem. 2011b, 696, 3186–3197.Search in Google Scholar

O’Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. cclib: a library for package-independent computational chemistry algorithms. J. Comput. Chem. 2008, 29, 839–845.Search in Google Scholar

Onitsuka, K.; Ohara, N.; Takei, F.; Takahashi, S. Synthesis and redox properties of trinuclear ruthenium-acetylide complexes with tri(ethynylphenyl)amine bridge. Dalton Trans. 2006, 35, 3693–3698.Search in Google Scholar

Ott, I.; Kowalski, K.; Gust, R.; Maurer, J.; Mücke, P.; Winter, R. F. Comparative biological evaluation of two ethylene linked mixed binuclear ferrocene/ruthenium organometallic species. Bioorg. Chem. Med. Lett. 2010, 20, 866–869.Search in Google Scholar

Pearson, G. A.; Rocek, M.; Walter, R. I. Cepstral and direct analysis of electron spin resonance spectra of substituted triarylaminium cation radicals. Correlation of spin distribution with substituent constants. J. Phys. Chem. 1978, 82, 1185–1192.Search in Google Scholar

Perdew, J. P.; Burke, K.; Enzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.Search in Google Scholar

Pevny, F.; Di Piazza, E.; Norel, L.; Drescher, M.; Winter, R. F.; Rigaut, S. Fully delocalized (ethynyl)(vinyl)phenylene bridged diruthenium radical complexes. Organometallics 2010, 29, 5912–5918.Search in Google Scholar

Pichlmaier, M.; Winter, R. F.; Zabel, M.; Záliş, S. Electron transfer across multiple hydrogen-bonds: the case of ureapyrimidinedione substituted vinyl ruthenium and osmium complexes. J. Am. Chem. Soc. 2009, 131, 4892–4903.Search in Google Scholar

Pragst, F.; Ziebig, R.; Boche, E. Estimation of triplet energies from electrogenerated chemiluminescence: possibilities and restrictions. J. Luminesc. 1979, 21, 21–41.Search in Google Scholar

Qian, G.; Wang, Z. Y. Near-infrared organic compounds and emerging applications. Chem. Asian J. 2010, 5, 1006–1029.Search in Google Scholar

Ramírez, C. L.; Pegoraro, C. N.; Filevich, O.; Bruttomeso, A.; Etchenique, R.; Parise, A. R. Role of ruthenium oxidation states in ligand-to-ligand charge transfer processes. Inorg. Chem. 2012, 51, 1261–1268.Search in Google Scholar

Renz, M.; Theilacker, K.; Lambert, C.; Kaupp, M. A reliable quantum-chemical protocol for the characterization of organic mixed-valence compounds. J. Am. Chem. Soc. 2009, 131, 16292–16302.Search in Google Scholar

Richardson, D. E.; Taube, H. Mixed-valence molecules: electronic delocalization and stabilization. Coord. Chem. Rev. 1984, 60, 107–129.Search in Google Scholar

Risko, C.; Coropceanu, V.; Barlow, S.; Geskin, V.; Schmidt, K.; Gruhn, N. E.; Marder, S. R.; Breédas, J.-L. Trends in electron-vibration and electronic interactions in bis(dimethylamino) mixed-valence systems: a joint experimental and theoretical investigation. J. Phys. Chem. C 2008, 112, 7959–7967.Search in Google Scholar

Robin, M. B.; Day, P. Mixed valence chemistry – a survey and classification. Adv. Inorg. Chem. Radiochem. 1967, 10, 247–422.Search in Google Scholar

Runge, E.; Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 1984, 52, 997–1000.Search in Google Scholar

Scalamani, G.; Frisch, M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 2010, 132, 114110–114124.Search in Google Scholar

Schmieder, K.; Levitus, M.; Dang, H.; Garcia-Garibay, M. A. Photophysical properties of coplanar and twisted 1,4-bis(9-ethynylanthracenyl)benzene. Rotational equilibration in the excited states of diaryalkynes. J. Phys. Chem. A 2002, 106, 1551–1556.Search in Google Scholar

Seibt, J.; Schaumloeffel, A.; Lambert, C.; Engel, V. Quantum study of the absorption spectroscopy of bis(triarylamine) radical cations. J. Phys. Chem. A 2008, 112, 10178–10184.Search in Google Scholar

Silvestri, F.; Irwin, M. D.; Beverina, L.; Facchetti, A.; Pagani, G. A.; Marks, T. J. Efficient squaraine-based solution processable bulk-heterojunction solar cells. J. Am. Chem. Soc. 2008, 130, 17640–17641.Search in Google Scholar

Stefflova, K.; Chen, J.; Zhang, G. Using molecular beacons for cancer imaging and treatment. Front. Biosci. 2007, 12, 4709–4721.Search in Google Scholar

Sutton, J. E.; Taube, H. Metal to metal interactions in weakly coupled mixed-valence complexes based on ruthenium ammines. Inorg. Chem. 1981, 20, 3125–3134.Search in Google Scholar

Szeghalmi, A. V.; Erdmann, M.; Engel, V.; Schmitt, M.; Amthor, S.; Kriegisch, V.; Nöll, G.; Stahl, R.; Lambert, C.; Leusser, D.; et al. How delocalized is the N,N,N',N'-tetraphenylphenylenediamine radical cation? An experimental and theoretical study on the electronic and molecular structure. J. Am. Chem. Soc. 2004, 126, 7834–7845.Search in Google Scholar

Walter, R. I. Substituent effects on the properties of stable aromatic free radicals. The criterion for non-Hammett behavior 1. J. Am. Chem. Soc. 1966, 88, 1923–1930.Search in Google Scholar

Ward, M. D. Near-infrared electrochromic materials for optical attenuation based on transition-metal coordination complexes. J. Solid State Electrochem. 2005, 9, 778–787.Search in Google Scholar

Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Rational development of practical catalysts for aromatic carbon-nitrogen bond formation. Acc. Chem. Res. 1998, 31, 805–818.Search in Google Scholar

Wu, X. H.; Jin, S.; Liang, J. H.; Yong, Z.; Yu, G.-A.; Liu, S. H. Synthesis, characterization, and substituent effects of binuclear ruthenium vinyl complexes [RuCl(CO)(PMe3)3]2(μ-CHCH−Ar−CHCH). Organometallics 2009a, 28, 2450–2459.10.1021/om900018ySearch in Google Scholar

Wu, X.; Weng, T.; Jin, S.; Liang, J.; Guo, R.; Yu, G.-A.; Liu, S. H. Synthesis, characterization, and substituent effects of mononuclear ruthenium complexes [RuCl(CO)(PMe3)3(CHCH-C6H4-R-p)] (R═H, CH3, OCH3, NO2, NH2, NMe2). J. Organomet. Chem. 2009b, 694, 1877–1883.Search in Google Scholar

Wuttke, E.; Pevny, F.; Hervault, Y.-M.; Norel, L.; Drescher, M.; Winter, R. F.; Rigaut, S. Fully delocalized (ethynyl)(vinyl)phenylene bridged triruthenium complexes in up to five different oxidation states. Inorg. Chem. 2012, 51, 1902–1915.Search in Google Scholar

Xia, H.; Wen, T. B.; Hu, Q. Y.; Wang, X.; Chen, X.; Shek, L. Y.; Williams, I. D.; Wong, K. S.; Wong, G. K. L.; Jia, G. Synthesis and characterization of trimetallic ruthenium and bimetallic osmium complexes with metal-vinyl linkages. Organometallics 2005, 24, 562–569.Search in Google Scholar

Ye, S.; Sarkar, B.; Lissner, F.; Schleid, T.; van Slageren, J.; Fiedler, J.; Kaim, W. Three-spin system with a twist: a bis(semiquinonato)copper complex with a nonplanar configuration at the copper(II) center. Angew. Chem. Int. Ed. Engl. 2005, 44, 2103–2106.Search in Google Scholar

Yum, J.-H.; Walter, P.; Huber, S.; Rentsch, D.; Geiger, T.; Nüesch, F.; De Angelis, F.; Grätzel, M.; Nazeeruddin, M. K. Efficient far red sensitization of nanocrystalline TiO2 films by an unsymmetrical squaraine dye. J. Am. Chem. Soc. 2007, 129, 10320–10321.Search in Google Scholar

Záliš, S.; Winter, R. F.; Kaim, W. Quantum chemical interpretation of redox properties of ruthenium complexes with vinyl and TCNX type non-innocent ligands. Coord. Chem. Rev. 2010, 254, 1383–1396.Search in Google Scholar

Zheng, S.; Barlow, S.; Risko, C.; Kinnibrugh, T. L.; Khrustalev, V. N.; Jones, S. C.; Antipin, M. Y.; Tucker, N. M.; Timofeeva, T. V.; Coropceanu, V.; et al. Isolation and crystal structures of two singlet bis(triarylamine) dications with nonquinoidal geometries. J. Am. Chem. Soc. 2006, 128, 1812–1817.Search in Google Scholar

Zhou, G.; Baumgarten, M.; Müllen, K. Arylamine-substituted oligo(ladder-type pentaphenylene)s: electronic communication between bridged redox centers. J. Am. Chem. Soc. 2007, 129, 12211–12221.Search in Google Scholar

Received: 2012-7-30
Accepted: 2012-9-18
Published Online: 2012-12-05
Published in Print: 2012-12-01

©2012 by Walter de Gruyter Berlin Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/irm-2012-0005/html
Scroll to top button