Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter (O) April 15, 2014

A review of the demonstration of innovative solvent extraction processes for the recovery of trivalent minor actinides from PUREX raffinate

  • G. Modolo EMAIL logo , A. Wilden , A. Geist , D. Magnusson and R. Malmbeck
From the journal Radiochimica Acta

Abstract

The selective partitioning (P) of long-lived minor actinides fromhighly active waste solutions and their transmutation (T) to short-lived or stable isotopes by nuclear reactions will reduce the long-term hazard of the high-level waste and significantly shorten the time needed to ensure their safe confinement in a repository. The present paper summarizes the on-going research activities at Forschungszentrum Jülich (FZJ), Karlsruher Institut für Technologie (KIT) and Institute for Transuranium Elements (ITU) in the field of actinide partitioning using innovative solvent extraction processes. European research over the last few decades, i.e. in the NEWPART, PARTNEW and EUROPART programmes, has resulted in the development of multi-cycle processes for minor actinide partitioning. These multi-cycle processes are based on the co-separation of trivalent actinides and lanthanides (e.g. by the DIAMEX process), followed by the subsequent actinide(III)/lanthanide(III) group separation in the SANEX process. The current direction of research for the development of innovative processes within the recent European ACSEPT project is discussed additionally.

This paper is focused on the development of flow-sheets for recovery of americium and curium from highly active waste solutions. The flow-sheets are verified by demonstration processes, in centrifugal contactors, using synthetic or genuine fuel solutions. The feasibility of the processes is also discussed.

Published Online: 2014-4-15
Published in Print: 2012-8-1

©2014 by Walter de Gruyter Berlin/Boston

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1524/ract.2012.1962/html
Scroll to top button