Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 2, 2014

On (m,n)-Derivations of Some Algebras

  • Qihua Shen EMAIL logo , Jiankui Li and Jianbin Guo
From the journal Demonstratio Mathematica

Abstract

Let A be a unital algebra, δ be a linear mapping from A into itself and m, n be fixed integers. We call δ an (m, n)-derivable mapping at Z, if mδ(AB) + nδ(BA) = mδ(A)B + mAδ(B) + nδ(B)A for all A,B ∈ A with AB = Z. In this paper, (m, n)-derivable mappings at 0 (resp. IA ⊕ 0, I) on generalized matrix algebras are characterized. We also study (m, n)-derivable mappings at 0 on CSL algebras. We reveal the relationship between this kind of mappings with Lie derivations, Jordan derivations and derivations.

References

[1] J. Alaminos, M. Mathieu, A. Villena, Symmetric amenability and Lie derivations, Math. Proc. Cambridge Philos. Soc. 137 (2004), 433-439.10.1017/S0305004104007637Search in Google Scholar

[2] R. An, J. Hou, Characterization of derivations on triangular rings: additive maps derivable at idempotents, Linear Algebra Appl. 431 (2009), 1070-1080.10.1016/j.laa.2009.04.005Search in Google Scholar

[3] R. An, J. Hou, Characterizations of Jordan derivations on rings with idempotent, Linear Multilinear Algebra 58 (2010), 753-763.10.1080/03081080902992047Search in Google Scholar

[4] M. Brešar, Characterizing homomorphisms, derivations and multipliers in rings with idempotents, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 9-21.10.1017/S0308210504001088Search in Google Scholar

[5] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006.10.1090/S0002-9939-1988-0929422-1Search in Google Scholar

[6] W. Cheung, Lie derivations of triangular algebra, Linear Multilinear Algebra 51 (2003), 299-310.10.1080/0308108031000096993Search in Google Scholar

[7] K. Davidson, Nest Algebras, Pitman Research Notes in Mathematics Series, Longman Scientific and Technical, 1988.Search in Google Scholar

[8] I. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.10.1090/S0002-9939-1957-0095864-2Search in Google Scholar

[9] J. Hou, R. An, Additive maps on rings behaving like derivations at idempotent-product elements, J. Pure Appl. Algebra. 215 (2011), 1852-1862.10.1016/j.jpaa.2010.10.017Search in Google Scholar

[10] J. Hou, X. Qi, Additive maps derivable at some points on J -subspace lattice algebras, Linear Algebra Appl. 429 (2008), 1851-1863.10.1016/j.laa.2008.05.013Search in Google Scholar

[11] M. Jiao, J. Hou, Additive maps derivable or Jordan derivable at zero point on nest algebras, Linear Algebra Appl. 432 (2010), 2984-2994.10.1016/j.laa.2010.01.009Search in Google Scholar

[12] B. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge Philos. Soc. 120 (1996), 455-473.10.1017/S0305004100075010Search in Google Scholar

[13] J. Li, Z. Pan, Annihilator-preserving maps, multipliers, and derivations, Linear Algebra Appl. 432 (2010), 5-13.10.1016/j.laa.2009.06.002Search in Google Scholar

[14] J. Li, Z. Pan, On derivable mappings, J. Math. Anal. Appl. 374 (2011), 311-322.10.1016/j.jmaa.2010.08.020Search in Google Scholar

[15] J. Li, Z. Pan, H. Xu, Characterizations of isomorphisms and derivations of some algebras, J. Math. Anal. Appl. 332 (2007), 1314-1322.10.1016/j.jmaa.2006.10.071Search in Google Scholar

[16] F. Lu, J. Wu, Characterizations of Lie derivations of BpXq, Linear Algebra Appl. 432 (2010), 89-99.10.1016/j.laa.2009.07.026Search in Google Scholar

[17] F. Lu, Characterizations of derivations and Jordan derivations on Banach algebras, Linear Algebra Appl. 430 (2009), 2233-2239.10.1016/j.laa.2008.11.025Search in Google Scholar

[18] F. Lu, The Jordan structure of CSL algebras, Studia Math. 190 (2009), 283-299.10.4064/sm190-3-3Search in Google Scholar

[19] X. Qi, J. Hou, Characterizations of derivations of Banach space nest algebras: allderivable point, Linear Algebra Appl. 432 (2010), 3183-3200.10.1016/j.laa.2010.01.020Search in Google Scholar

[20] A. Sands, Radicals and Morita contexts, J. Algebra 24 (1973), 335-345.10.1016/0021-8693(73)90143-9Search in Google Scholar

[21] J. Vukman, On pm; nq-Jordan derivation and commutativity of prime rings, Demonstratio Math. 41 (2008), 773-778.Search in Google Scholar

[22] J. Zhang, W. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl. 419 (2006), 251-255.10.1016/j.laa.2006.04.015Search in Google Scholar

[23] S. Zhao, J. Zhu, Jordan all-derivable points in the algebra of all upper triangular matrices, Linear Algebra Appl. 433 (2010), 1922-1938.10.1016/j.laa.2010.07.006Search in Google Scholar

[24] J. Zhu, C. Xiong, All-derivable points in continuous nest algebras, J. Math. Anal. Appl. 340 (2008), 843-853.Search in Google Scholar

[25] J. Zhu, C. Xiong, Derivable mappings at unit operator on nest algebras, Linear Algebra Appl. 422 (2007), 721-735.10.1016/j.laa.2006.12.002Search in Google Scholar

[26] J. Zhu, C. Xiong, R. Zhang, All-derivable points in the algebra of all upper triangular matrices, Linear Algebra Appl. 429(4) (2008), 804-818. 10.1016/j.laa.2008.04.010Search in Google Scholar

Received: 2012-7-30
Published Online: 2014-9-2
Published in Print: 2014-7-1

© by Qihua Shen

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/dema-2014-0054/html
Scroll to top button